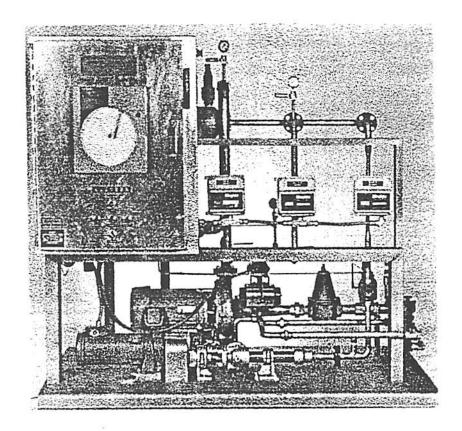

# **Starch Cooker Manual**





## **Table of Contents**

|                                          | Page |
|------------------------------------------|------|
| Description and Specifications           | 1    |
| Description of Operation                 | 2    |
| Safety Features                          | 3    |
| Cooker Location                          | 4    |
| Installation Requirements                | 5    |
| Startup and Shutdown Procedures          | 9    |
| Cooker Timing Sequence                   | 10   |
| Cato® Table                              | 11   |
| Slurry Makedown Chart                    | 12   |
| Cooker Flow Settings-Wet End Starches    | 13   |
| Cooker Flow Settings-Size Press Starches | 16   |
| Cooker Flow Calculations                 | 19   |
| Cooker Starch Solids Adjustment          | 20   |
| Cooked Starch Storage Temperature        | 22   |
| Pipe Losses for Viscous Liquids          | 23   |
| Troubleshooting                          | 24   |
| Cooking Conditions Data Sheet            | 26   |
| Periodic Servicing                       | 27   |
| Lubrication                              | 28   |
| Level Control Troubleshooting            | 29   |
|                                          |      |


Appendix A: Starch Tables

Appendix B: Tank Capacity Table

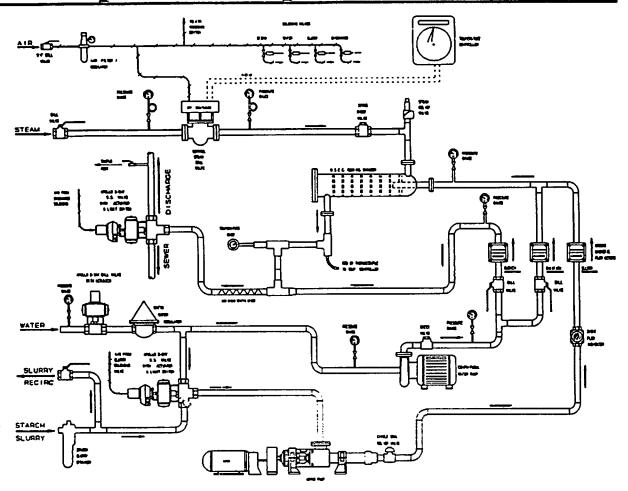
### **National Starch Cooker**

### **Description and Specifications**

### Model C160SS



#### **Applications**


This cooker finds applications where raw starch requires processing (cooking) before use on a paper machine. It is designed to automatically maintain a supply of starch in a cooked starch storage tank at a nominal maximum cooking rate of 1000 dry lb/hr.

#### **Specifications**

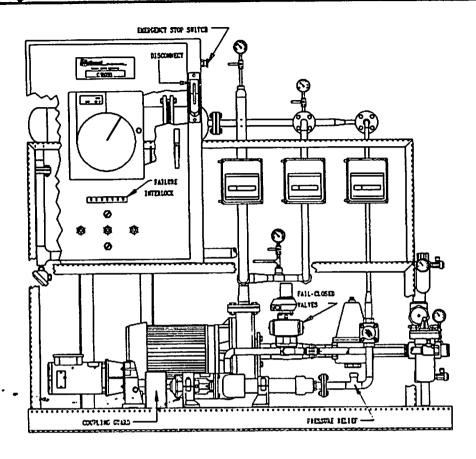
Size - 80" x 48" x 73" high Weight - 3,000 pounds Flow rates:

Starch slurry - 2 to 7 gpm
Dilution water - up to 40 gpm
Quench water - up to 100 gpm
Cooking chamber - 15 to 40 gpm
Cooking temperature - up to 300°F
Slurry concentration - up to 32%

## Description of Operation



Starch slurry of known concentration is metered to a cooking chamber by a positive displacement pump. The starch slurry may be diluted with predetermined amounts of water before or after cooking or both. As the starch slurry enters the chamber, it is immediately contacted by live steam in such a manner that intimate mixing occurs. The steam supplies both heat and turbulence to the system. As a result, the starch is instantly gelatinized.


The actual amount of dilution water required is dependent upon final solids. With the dilution feature, it is possible to slurry high solids batches and control the dilution to suit the desired end product. On those starches where overcooking is undesirable, the quench water will rapidly cool the product.

The cooker is started by first turning on the utilities and then turning the Operating Switch on.

First, water is heated and discharged to the sewer for a predetermined period of time to allow the cooker to come to the operating temperature. Then the cooker automatically switches over to cooking starch and discharges to the cooked starch storage tank.

When the level in the storage tank reaches the high level setting, the cooker automatically switches back over to water and discharges to the sewer for a short period of time for flushing before shutting off. When the level in the cooked starch storage tank drops below the low level setting, the cooker automatically restarts.

## **Safety Features**



Failure Interlock - The cooker's programmable logic controller continuously seven systems for monitors operation. These include motor overload, air pressure, water pressure, starch slurry flow, cooking temperature, and proper operation of the 3-way starch and discharge valves. Should any of these systems drop below their minimum safe operating thresholds, the cooker will "fail" and automatically shut down. Following a failure, the cooker will automatically reset and attempt to restart again. A remote alarm may be connected into the cooker's electrical control system to indicate a failure.

Starch Pump Relief Valve - A pressure relief valve set at 100 psi is provided on the discharge side of the positive displacement starch slurry pump.

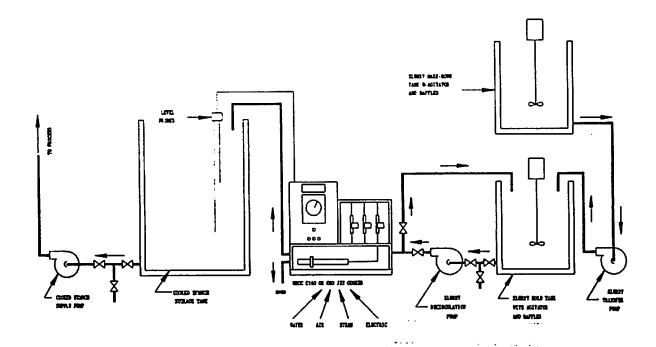
Steam Pressure Relief Valve - A pressure relief valve set at 100 psi is mounted on the process steam line for relief of excessive pressure.

Local Disconnect - Interrupts all electrical power to cooker for servicing.

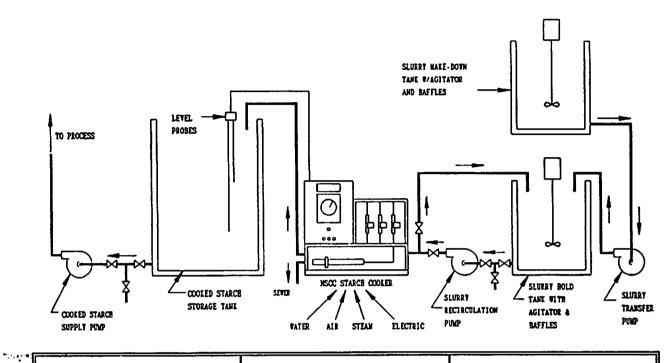
Emergency Stop Switch - A red mushroom push-pull maintained-contact switch interrupts all control power, which stops all motors and closes valves.

Fail-Closed Valves - All pneumatic valves are spring-loaded, fail-closed ball valves to ensure complete shut-off.

Coupling Guard - All cookers are provided with a guard covering the coupling between the starch slurry pump and motor.


### **Cooker Location**

The cooker is normally located in the mill area where starch is being used. The cooker and its associated equipment will require approximately 200-300 square feet of floor space and about 8 feet clear overhead space.


Utilities should be readily accessible to the cooker and meet the requirements outlined under Installation Requirements.

It would be best to have distances and fittings between equipment kept to a minimum, particularly between the cooker and cooked starch hold tank in order to minimize the back pressure on the cooker.

In selecting the installation location and layout of the various parts, consideration should be given to ease of maintenance.



## **Installation Requirements**



| UTILITIES | C80 MODEL                                                     | C160 MODEL                                                 |
|-----------|---------------------------------------------------------------|------------------------------------------------------------|
| ELECTRIC  | 460 or 575 VAC/60 Hz<br>3 Phase/11 Horsepower                 | 460 or 575 VAC/60 Hz<br>3 Phase/11 Horsepower              |
| STEAM     | 1 1/2" Hard Piping<br>100-150 psig (sat.)<br>Up to 2000 lb/hr | 2" Hard Piping<br>100-150 psig (sat.)<br>Up to 4000 lb/hr  |
| AIR       | 1/4" O.D. Tubing<br>1-2 SCFM @ 70-150 psi<br>Dry and Clean    | 1/4" O.D. Tubing<br>1-2 SCFM @ 70-150 psi<br>Dry and Clean |
| WATER     | 80 gpm @ 20 psi min.<br>1 1/2" Line                           | 160 gpm @ 20 psi min.<br>2° Line                           |

#### ADDITIONAL PIPING

| SLURRY     | 3/4" Feed and Recycle<br>6 gpm @ 5 ft/sec min. vel. | 1" Feed and Recycle<br>15 gpm @ 5 ft/sec min. vel. |
|------------|-----------------------------------------------------|----------------------------------------------------|
| TO SEWER   | 1 1/2" Line                                         | 2° Line                                            |
| TO PROCESS | 1 1/2" Line<br>Storage Tank with<br>1 Hour Capacity | 2° Line<br>Storage Tank with<br>1 Hour Capacity    |

## Installation Requirements

#### **Starch Storage Tanks**

#### Slurry Makedown Tank

In order to make down dry starch powder into water, a tank must be provided for slurry preparation. This tank must be agitated to provide vigorous mixing to wet out the starch in water. A vortex in the tank will best wet out the starch. It is recommended that this tank be constructed of stainless steel, but fiberglass reinforced plastic (FRP) or high density polyethylene (HDPE) may be used if properly engineered for this service.

Tank size is often dictated by starch container or package size. For example, a 950-gallon tank might be used to prepare slurry at 32% or 25% solids from a 2,000-lb bulk bag. The "Starch Slurry Preparation" table in this manual is a useful tool to help determine tank size. Certainly floor space, headroom, floor loading and starch unloading requirements also affect tank size. To maximize cooker capacity and to minimize makedown water and preparation time, National recommends slurrying at 32% solids.

This tank may be used to supply the starch cooker directly. If this is the case, the cooker should be interlocked so that it does not start while slurry is being made down to prevent inconsistent solids. Also, enough cooked starch should be in storage to allow time for slurry batch preparation. Our recommendation is to install a slurry hold tank.

#### Slurry Hold Tank

This tank serves as a slurry tank to the starch cooker and should be sized to provide approximately eight hours of storage capacity based on starch usage on the paper machine. For example, a machine producing 25 tons per hour of paper using 20 lb of starch per ton of paper would require a hold tank with capacity to hold over 1,333 gallons of slurry at 32% solids (4,000 dry pounds). The tank should be large enough so that while the lower agitator blade is still covered, it can receive a full load from the slurry makedown tank.

The slurry hold tank should be agitated to keep the starch in suspension, but it does not have to be vigorous or create a vortex in the tank. Tank material should be stainless steel, but FRP or HDPE tanks may be considered.

#### Cooked Starch Hold Tank

This tank is supplied with cooked starch from the starch cooker. Cooked starch is usually stored at 1-4% solids for wet end products and 6-15% solids for surface or size press starches. Tank size should provide between 1-3 hours of capacity based on machine usage. Stainless steel is certainly adequate for use in this tank, but tank size may make this material selection expensive. FRP is usually a desirable material for construction because of its strength and relative cost. HDPE may be used, but the cooked starch must be held at or below 150°F. Tank manufacturers should be consulted during tank selection.

A 2" NPT coupling must be provided on top of the cooked starch hold tank for the level probes which operate the cooker. This tank should not be agitated as the mixing shears down the molecular integrity of the cooked starch granule.

### **Pump Recommendations**

#### Slurry Transfer Pumps

Centrifugal pumps are best suited for transferring slurry from the slurry makedown tank to the slurry hold tank. Pump capacity should be such that it transfers the contents of the tank in less than 10 minutes with head requirements as dictated by the transfer piping. Transfer pumps should be constructed with a stainless steel casing and impeller with a stuffing box or mechanical seal. Open impellers are recommended, but not required. It is imperative to include a pump case drain to facilitate cleaning the system in the case of a power outage.

#### Slurry Recirculation Pumps

These pumps supply slurry continuously from the slurry hold tank to the starch cooker. The pump should circulate approximately 20-40 gpm of slurry through the cooker and back to the slurry hold tank. This allows the cooker to draw off from the slurry supply during the cook cycle with an adequate amount of circulation back to the tank to keep the starch in suspension.

Pump selection and construction closely follow those requirements of the slurry transfer pumps.

#### Cooked Starch Pumps

Cooked starch pumps deliver starch from the cooked starch hold tank to the paper machine. Centrifugal pumps are recommended for most applications based on reliability and economics. Centrifugal pumps also offer versatility as far as single or multiple addition points and hand or automatic flow control valves. To help minimize shear, centrifugal pumps should operate at 1800 rpm and not be oversized.

Where excessive pressure is required from the pump, positive displacement pumps are best suited. Diaphragm and piston pumps are usually not suited for starch addition because of the pulsation in flow. Gear pumps are only recommended where very viscous products are being used.

In all cases, stainless steel is the recommended construction for wetted pump parts. Because "all starches are not alike", it is best to consult National Starch to aid in the selection of the cooked starch pump for a product-specific application.

and the property of the second state of the second state of the second state of the second state of the second

o province de la companya del companya de la companya del companya de la companya

#### **Piping**

#### General Recommendations

Drains should be provided at low points in the piping for housekeeping and maintenance concerns. Water flush lines are also helpful in the slurry transfer lines when transferring a batch of slurry from the makedown tank to flush slurry through to the hold tank. This flush should be timed and metered to account for the additional dilution water added to the slurry.

#### Material

All piping in a permanent starch system should be stainless steel. For trial work, properly rated rubber hose is adequate for all connections, except for steam which should always be hard piped.

#### "Dead Space"

Starch slurry without agitation or flow will allow the starch to settle out of suspension. Because of this, it is very important to eliminate stagnant spaces in the piping where the slurry is not moving. This includes isolation valves, tees, vertical piping sections and any other portion in the system where slurry is allowed to settle. Vertical dead space is most critical because starch settling out will fill the lower half of the length of pipe totally blocking fluid passage. In horizontal dead space, starch settles out in the bottom of the horizontal run with water in the top half. To ensure that the starch does not settle out in the line, a minimum pipeline velocity of 5 ft/sec is recommended.

#### Tank Piping

The slurry transfer line from the slurry makedown tank and the recirculation line from the cooker should extend to the bottom of the slurry hold tank to prevent foaming and air entrainment. Be sure to locate these lines away from any agitation and pump suctions.

The cooked starch piping from the cooker into the cooked starch hold tank should extend below the low level control point of the cooker so that it enters the tank below the surface of the starch. This also prevents foaming and air entrainment.

Recirculation of cooked starch back to the cooked starch tank is not required or recommended.

#### Siphoning

If the slurry hold tank is located on a floor below the cooker, the recirculation piping after the cooker has a tendency to create a siphon, starving the suction of the Moyno slurry pump on the cooker. If this should happen, the ball valve on the slurry recirculation leg located near the front, right side of the cooker should be throttled to pressurize the Moyno pump suction.

## Startup & Shutdown Procedures

### Startup Procedure

- 1. Check that starch slurry duplex strainer baskets are clean.
- 2. Open service lines to cooker i.e. water, air, steam, and starch slurry supplies. Turn electric power on.
- 3. Adjust set point of the temperature controller to desired cooking temperature.
- 4. Put cooker into operation by turning the Operating Switch "On".

- 5. Set the desired dilution and quench water flow rates by adjusting the valves on the inlet lines to the mag flow meters.
- 6. Set the desired starch slurry flow rate using the speed pot on the panel box.
- 7. When cooker switches from sewer to process, check all flow rates and compensate for any changes that may have occurred due to pressure variations.

### **Operating Switch**

The Operating Switch controls power to the level control system ONLY, which in turn affects the automatic operating sequence of the cooker.

The Operating Switch will NOT IMMEDIATELY STOP the cooker. Only the Emergency Stop switch located on the

top right side of the panel box will stop ALL cooker functions.

When the Operating Switch is turned off, the pump motors remain energized until the cooker completes a shutdown (flush-out) cycle.

#### **Shutdown Procedure**

Since the automated cooker flushes itself on each shutdown, no special procedures are required for a shutdown. Simply turn the Operating Switch "Off".

If the shutdown is for an extended period of time, shut off the utilities once the cooker's shutdown is complete. Be sure that the starch slurry storage tank and lines are cleaned to prevent plugging of the lines by settling of the starch slurry.

## **Cooker Timing Sequence**

Programmer keyswitch should be in the RUN position.

To monitor main timer: CLR SHF 6 0 0 MON

| STARTUP CYCLE              | TIME (sec)               |
|----------------------------|--------------------------|
| Stand-By                   | 0 - Holds @ 0 (Note 1)   |
| Water valve opens          | 2                        |
| Water pump starts          | 4                        |
| Moyno pump starts          | 8                        |
| Steam valve starts to open | 12 - Holds @ 12 (Note 2) |
| Slurry valve to slurry     | 42                       |
| Discharge valve to process | 47                       |
| Start-Up complete/cooking  | 50 - Holds @ 50 (Note 3) |
| -                          |                          |
|                            |                          |

#### SHUT DOWN CYCLE

| Slurry valve to water         | 52 |
|-------------------------------|----|
| Discharge valve to sewer      | 62 |
| Steam valve closes            | 72 |
| Moyno pump off                | 92 |
| Water pump off                | 94 |
| Water valve closes            | 96 |
| Shut down complete/reset to 0 | 98 |

#### NOTE 1: Timer holds @ 0 until:

- 1. Operating switch to on or
- 2. Low level signal

#### NOTE 2: Timer holds @ 12 until:

- 1. Cooker satisfied for temperature or
- 2. 180 seconds elapse

#### NOTE 3: Timer holds @ 50 until:

- 1. High level signal or
- 2. Operating switch to off

## **CATO®TABLE**

### (Starch Slurry & Cooked Starch)

| % Dry Cato | Lb Dry CATO/Gal | Density, Lb/Gal |
|------------|-----------------|-----------------|
| 1          | 0.084           | 8.36            |
|            | 0.168           | 8.39            |
| 2<br>3     | 0.252           | 8.43            |
| 4          | 0.338           | 8.46            |
| 5          | 0.425           | 8.49            |
| 6          | 0.511           | 8.53            |
| 7          | 0.599           | 8.56            |
| 8          | 0.687           | 8.60            |
| 9          | 0.776           | 8.63            |
| 10         | 0.867           | 8.67            |
| • **       |                 |                 |
| 12         | 1.048           | 8.74            |
| 14         | 1.233           | 8.81            |
| 16         | 1.421           | 8.88            |
| 18         | 1.612           | 8.95            |
| 20         | 1.806           | 9.03            |
| 22         | 2.003           | 9.11            |
| 24         | 2.204           | 9.19            |
| 26         | 2.409           | 9.27            |
| 28         | 2.617           | 9.34            |
| 30         | 2.828           | 9.43            |
| 32         | 3.043           | 9.51            |

Above data at  $60^{\circ}F$ Wt of 1 gal  $H_2O @ 60^{\circ}F = 8.33$  lb.

## **Starch Slurry Preparation**

1 Lb Dry Starch per Gallon Slurry (11.5%=6.45°Baume'=8.717 Lb/Gal)

| Pounds<br>Starch<br>Added | Gallons<br>Water<br>Added | Total<br>Gallons<br>Slurry |
|---------------------------|---------------------------|----------------------------|
| 50                        | 41                        | 45                         |
| 100                       | 82                        | 90                         |
| 200                       | 164                       | 180                        |
| 300                       | 246                       | 270                        |
| 400                       | 328                       | 359                        |
| 500                       | 410                       | 449                        |
| 600                       | 492                       | 539                        |
| 700                       | 574                       | 629                        |
| 800                       | 656                       | 719                        |
| 900                       | 738                       | 808                        |
| 1000                      | 819                       | 897                        |
| 2000                      | 1639                      | 1796                       |

2 Lb Dry Starch per Gallon Slurry (21.9%=12.3'Baume'=9.105 Lb/Gal)

| Pounds<br>Starch<br>Added | Gallons<br>Water<br>Added | Total<br>Gallons<br>Slurry |
|---------------------------|---------------------------|----------------------------|
| 50                        | 19                        | 23                         |
| 100                       | 37                        | 45                         |
| 200                       | 75                        | 91                         |
| 300                       | 112                       | 135                        |
| 400                       | 149                       | 180                        |
| 500                       | 187                       | 226                        |
| 600                       | 224                       | 271                        |
| 700                       | 261                       | 316                        |
| 800                       | 299                       | 361                        |
| 900                       | 336                       | 406                        |
| 1000                      | 373                       | 451                        |
| 2000                      | 747                       | 903                        |

2.5 Lb Dry Starch per Gallon Slurry (26.9%=15.1°Baume'=9.303 Lb/Gal)

| Pounds<br>Starch<br>Added | Gallons<br>Water<br>Added | Total<br>Gallons<br>Slurry |
|---------------------------|---------------------------|----------------------------|
| 50                        | 13                        | 17                         |
| 100                       | 27                        | 35                         |
| 200                       | 54                        | 70                         |
| 300                       | 81                        | 105                        |
| 400                       | 108                       | 140                        |
| 500                       | 134                       | 174                        |
| 600                       | 161                       | 209                        |
| 700                       | 188                       | 244                        |
| 800                       | 215                       | 279                        |
| 900                       | 242                       | 314                        |
| 1000                      | 269                       | 348                        |
| 2000                      | 538                       | 697                        |

3 Lb Dry Starch per Gallon Slurry (31.6%=17.8°Baume'=9.494 Lb/Gal)

| Pounds<br>Starch<br>Added | Gallons<br>Water<br>Added | Total<br>Gallons<br>Slurry |
|---------------------------|---------------------------|----------------------------|
| 50                        | 11                        | 15                         |
| 100                       | 22                        | 30                         |
| 200                       | 44                        | 60                         |
| 300                       | 67                        | 90                         |
| 400                       | 89                        | 120                        |
| 500                       | 111                       | 150                        |
| 600                       | 133                       | 180 👯                      |
| 700                       | 155                       | 210                        |
| 800                       | 177                       | 240                        |
| 900                       | 200                       | 270 🤲                      |
| 1000                      | 222                       | 300 🐲                      |
| 2000                      | 444                       | 600                        |

NOTE: Above tables assumes equilibrium moisture content of Cato® starch = 10%.

## CATO® Starch Cooker Flow Settings

### Cooking @ 4% Chamber Solids 1% and 2% Final Solids

#### 3 Lb/Gal Slurry (31.6% Solids)

### 2 Lb/Gal Slurry (21.9% Solids)

| Starch<br>Thruput<br>Lb/Hr | Slurry<br>GPM | Dilution<br>GPM | Quench<br>GPM<br>1% | Quench<br>GPM<br>2% |
|----------------------------|---------------|-----------------|---------------------|---------------------|
| 100                        | 0.56          | 3.7             | 15.0                | . 1                 |
| 150                        | 0.83          | 5.6             | 22.5                | -                   |
| 200                        | 1.11          | 7.5             | 30.0                |                     |
| 250                        | 1.39          | 9.3             | 37.5                | 12.5                |
| 300                        | 1.67          | 11.2            | 45.0                | 15.0                |
| 350                        | 1.94          | 13.1            | 52.5                | 17.5                |
| 400                        | 2.22          | 14.9            | 60.0                | 20.0                |
| 450                        | 2.50          | 16.8            | 67.5                | 22.5                |
| 500                        | 2.78          | 18.7            | 75.0                | 25.0                |
| 550                        | 3.06          | 20.5            | 82.5                | 27.5                |
| 600                        | 3.33          | 22.4            | 90.0                | 30.0                |
| 650                        | 3.61          | 24.3            | 97.5                | 32.5                |
| 700                        | 3.89          | 26.1            | 105.0               | 35.0                |
| 750                        | 4.17          | 28.0            | 112.5               | 37.5                |
| 800                        | 4.44          | 29.9            | 120.0               | 40.0                |
| 850                        | 4.72          | 31.7            |                     | 42.5                |
| 900                        | 5.00          | 33.6            |                     | 45.0                |

| Starch<br>Thruput<br>Lb/Hr | Slurry<br>GPM | Dilution<br>GPM | Quench<br>GPM<br>1% | Quench<br>GPM<br>2% |
|----------------------------|---------------|-----------------|---------------------|---------------------|
| 100                        | 0.83          | 3.50            | 15.0                | .                   |
| 150                        | 1.25          | 5.20            | 22.5                | 1 - 1               |
| 200                        | 1.67          | 6.90            | 30.0                | •                   |
| 250                        | 2.08          | 8.60            | 37.5                | 12.5                |
| 300                        | 2.50          | 10.4            | 45.0                | 15.0                |
| 350                        | 2.92          | 12.1            | 52.5                | 17.5                |
| 400                        | 3.33          | 13.8            | 60.0                | 20.0                |
| 450                        | 3.75          | 15.5            | 67.5                | 22.5                |
| 500                        | 4.17          | 17.3            | 75.0                | 25.0                |
| 550                        | 4.58          | 19.0            | 82.5                | 27.5                |
| 600                        | 5.00          | 20.7            | 90.0                | 30.0                |
| 650                        | 5.42          | 22.5            | 97.5                | 32.5                |
| 700                        | 5.83          | 24.2            | 105.0               | 35.0                |
| 750                        | 6.25          | 25.9            | 112.5               | 37.5                |
| 800                        | 6.67          | 27.6            | 120.0               | 40.0                |
| 850                        | 7.08          | 29.4            |                     | 42.5                |
| 900                        | 7.50          | 31.1            |                     | 45.0                |

#### 1 Lb/Gal Slurry (11.5% Solids)

| Starch<br>Thruput<br>Lb/Hr | Slurry<br>GPM | Dilution<br>GPM | Quench<br>GPM<br>1% | Quench<br>GPM<br>2% |
|----------------------------|---------------|-----------------|---------------------|---------------------|
| 100                        | 1.67          | 2.6             | 15.0                |                     |
| 150                        | 2.50          | 3.9             | 22.5                |                     |
| 200                        | 3.33          | 5.2             | 30.0                |                     |
| 250                        | 4.17          | 6.6             | 37.5                | 12.5                |
| 300                        | 5.00          | 7.9             | 45.0                | 15.0                |
| 350                        | 5.83          | 9.2             | 52.5                | 17.5                |
| 400                        | 6.67          | 10.5            | 60.0                | .20.0.              |
| 450                        | 7.50          | 11.8            | 67.5                | 22.5                |

#### **Basis of Calculations**

- Condensate estimated at 15% of slurry & dilution flows.
- Pounds of dry starch per gallon (slurry or

1% = 0.0836 lb/gal.

 $2\% = 0.1678 \text{ lb/gal}_{2.1.1.}$ 

3% = 0.2530 lb/gal

4% = 0.3380 lb/gal 5% = 0.4250 lb/gal 6% = 0.5120 lb/gal

#### **DIRECTIONS:**

- 1) Select appropriate table based on solids of slurry supply to cooker.
- 2) Select usage rate of starch greater than paper machine requirements. This is the cooker thruput.
- 3) Read flow settings horizontally across from thruput based on final solids requirements.
- 4) Refer to Starch Cooker Flow Calculations for flows with parameters other than shown in tables.

## CATO® Starch Cooker Flow Settings

### Cooking @ 5% Chamber Solids 1% and 2% Final Solids

#### 3 Lb/Gal Slurry (31.6% Solids)

| Starch<br>Thruput<br>Lb/Hr | Slurry<br>GPM | Dilution<br>GPM | Quench<br>GPM<br>1% | Quench<br>GPM<br>2% |
|----------------------------|---------------|-----------------|---------------------|---------------------|
| 100<br>150                 | 0.56<br>0.83  | 2.8<br>4.3      | 16<br>24            |                     |
| 200                        | 1.11          | 5.7             | 32                  | 12                  |
| 250                        | 1.39          | 7.1             | 40                  | 15                  |
| 300                        | 1.67          | 8.6             | 48                  | 18                  |
| 350                        | 1.94          | 10.0            | 56                  | 21                  |
| 400                        | 2.22          | 11.4            | 64                  | 24                  |
| 450                        | 2.50          | 12.8            | 72                  | 27                  |
| 500                        | 2.78          | 14.3            | 80                  | 30                  |
| 550                        | 3.06          | 15.7            | 88                  | 33                  |
| 600                        | 3.33          | 17.1            | 96                  | 36                  |
| 650                        | 3.61          | 18.6            | 104                 | 39                  |
| 700                        | 3.89          | 20.0            | 112                 | 42                  |
| 750                        | 4.17          | 21.4            | 120                 | 45                  |
| 800                        | 4.44          | 22.8            |                     | 48                  |
| 850                        | 4.72          | 24.3            |                     | 51                  |
| 900                        | 5.00          | 25.7            |                     | 54                  |
| 950                        | 5.28          | 27.1            | 1                   | 57                  |
| 1000                       | 5.56          | 28.5            |                     | 60                  |

#### 2 Lb/Gal Slurry (21.9% Solids)

| Starch<br>Thruput<br>Lb/Hr                                                                                          | Slurry<br>GPM                                                                                                                        | Dilution<br>GPM                                                                                                                | Quench<br>GPM<br>1%                                                                 | Quench<br>GPM<br>2%                                                              |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 100<br>150<br>200<br>250<br>300<br>350<br>400<br>450<br>500<br>550<br>600<br>650<br>700<br>750<br>800<br>850<br>900 | 0.83<br>1.25<br>1.67<br>2.08<br>2.50<br>2.92<br>3.33<br>3.75<br>4.17<br>4.58<br>5.00<br>5.42<br>5.83<br>6.25<br>6.67<br>7.08<br>7.50 | 2.6<br>3.9<br>5.2<br>6.4<br>7.7<br>9.0<br>10.3<br>11.6<br>12.9<br>14.2<br>15.5<br>16.8<br>18.0<br>19.3<br>20.6<br>21.9<br>23.2 | 16<br>24<br>32<br>40<br>48<br>56<br>64<br>72<br>80<br>88<br>96<br>104<br>112<br>120 | 12<br>15<br>18<br>21<br>24<br>27<br>30<br>33<br>36<br>39<br>42<br>45<br>48<br>51 |
| 850                                                                                                                 | 7.08                                                                                                                                 | 21.9                                                                                                                           |                                                                                     | 51                                                                               |

#### 1 Lb/Gal Slurry (11.5% Solids)

| Starch<br>Thruput<br>Lb/Hr | Slurry<br>GPM | Dilution<br>GPM | Quench<br>GPM<br>1% | Quench<br>GPM<br>2% |  |
|----------------------------|---------------|-----------------|---------------------|---------------------|--|
| 100                        | 1.67          | 1.7             | 16                  | • .                 |  |
| 150                        | 2.50          | 2.6             | 24                  | •                   |  |
| 200                        | 3.33          | 3.5             | 32                  | 12: 7               |  |
| 250                        | 4.17          | 4.4             | 40                  | 15                  |  |
| 300                        | 5.00          | 5.2             | 48                  | 18                  |  |
| 350                        | 5.83          | 6.1             | 56                  | 21                  |  |
| 400                        | 6.67          | 7.0             | 64                  | 24                  |  |
| 450                        | 7.50          | 7.8             | 72                  | 27                  |  |

#### **Basis of Calculations**

- 1) Condensate estimated at 15% of slurry & dilution flows.
- 2) Pounds of dry starch per gallon (slurry or cooked starch):

1% = 0.0836 lb/gal

2% = 0.1678 lb/gal

3% = 0.2530 lb/gal

4% = 0.3380 lb/gal

5% = 0.4250 lb/gal

6% = 0.5120 lb/gal

## CATO® Starch Cooker Flow Settings

### Cooking @ 6% Chamber Solids 2% and 4% Final Solids

### 3 Lb/Gal Slurry (31.6% Solids)

| Starch<br>Thruput<br>Lb/Hr | Slurry<br>GPM | Dilution<br>GPM | Quench<br>GPM<br>2% | Quench<br>GPM<br>4% |
|----------------------------|---------------|-----------------|---------------------|---------------------|
| 200                        | 1.11          | 4.6             | 13.4                | •                   |
| 250                        | 1.39          | 5.7             | 16.7                | •                   |
| 300                        | 1.67          | 6.8             | 20.0                |                     |
| 350                        | 1.94          | 8.0             | 23.4                |                     |
| 400                        | 2.22          | 9.1             | 26.7                | -                   |
| 450                        | 2.50          | 10.2            | 30.0                |                     |
| 500                        | 2.78          | 11.4            | 33.4                |                     |
| 550                        | 3.06          | 12.5            | 36.7                | •                   |
| 600                        | 3.33          | 13.6            | 40.1                | -                   |
| 650                        | 3.61          | 14.8            | 43.4                | -                   |
| 700                        | 3.89          | 15.9            | 46.7                | 11.7                |
| 750                        | 4.17          | 17.1            | 50.1                | 12.6                |
| 800                        | 4.44          | 18.2            | 53.4                | 13.4                |
| 850                        | 4.72          | 19.3            | 56.8                | 14.2                |
| 900                        | 5.00          | 20.5            | 60.1                | 15.1                |
| 950                        | 5.28          | 21.6            | 63.4                | 15.9                |
| 1000                       | 5.56          | 22.8            | 66.8                | 16.8                |
| 1100                       | 6.12          | 25.1            | 73.5                | 18.5                |
| 1200                       | 6.67          | 27.4            | 80.2                | 20.2                |
| 1300                       | 7.23          | 29.6            | 86.8                | 21.8                |

#### 2 Lb/Gal Slurry (21.9% Solids)

| Starch<br>Thruput<br>Lb/Hr | Slurry<br>GPM | Dilution<br>GPM | Quench<br>GPM<br>2% | Quench<br>GPM<br>4% |
|----------------------------|---------------|-----------------|---------------------|---------------------|
| 200                        | 1.67          | 4.0             | 13.4                |                     |
| 250                        | 2.08          | 5.0             | 16.7                |                     |
| 300                        | 2.50          | 6.0             | 20.0                | 1 -                 |
| 350                        | 2.92          | 7.0             | 23.4                |                     |
| 400                        | 3.33          | 8.0             | 26.7                |                     |
| 450                        | 3.75          | 9.0             | 30.0                |                     |
| 500                        | 4.17          | 10.0            | 33.4                |                     |
| 550                        | 4.58          | 11.0            | 36.7                | -                   |
| 600                        | 5.00          | 12.0            | 40.1                | j -                 |
| 650                        | 5.42          | 13.0            | 43.4                | -                   |
| 700                        | 5.83          | 14.0            | 46.7                | 11.7                |
| 750                        | 6.25          | 15.0            | 50.1                | 12.6                |
| 800                        | 6.67          | 16.0            | 53.4                | 13.4                |
| 850                        | 7.08          | 17.0            | 56.8                | 14.2                |
| 900                        | 7.50          | 18.0            | 60.1                | 15.1                |
|                            |               |                 |                     | <u> </u>            |

#### 1 Lb/Gal Slurry (11.5% Solids)

| Starch<br>Thruput<br>Lb/Hr | Slurry<br>GPM | Dilution<br>GPM | Quench<br>GPM<br>2% | Quench<br>GPM<br>4% |
|----------------------------|---------------|-----------------|---------------------|---------------------|
| 200                        | 3.33          | 2.3             | 13.4                | -                   |
| 250                        | 4.17          | 2.9             | 16.7                |                     |
| 300                        | 5.00          | 3.5             | 20.0                |                     |
| 350                        | 5.83          | 4.1             | 23.4                |                     |
| 400                        | 6.67          | 4.7             | 26.7                |                     |
| 450                        | 7.50          | 5.2             | 30.0                | •                   |

#### **Basis of Calculations**

- 1) Condensate estimated at 15% of slurry & dilution flows.
- 2) Pounds of dry starch per gallon (slurry or cooked starch):

1% = 0.0836 lb/gal

2% = 0.1678 lb/gal

3% = 0.2530 lb/gal

4% = 0.3380 lb/gal

5% = 0.4250 lb/gal

6% = 0.5120 lb/gal

### Size Press Starch Cooker Flow Settings

### 3 Lb/Gal Slurry (31.6% Solids)

Shaded data indicate settings at optimum cooking chamber flows, approximately 20-25 gpm (excl. condensate).

| OL -L OL          | 01            | 10% Cooking Chamber Solids |             |             |              |
|-------------------|---------------|----------------------------|-------------|-------------|--------------|
| Starch<br>Thruput | Slurry<br>GPM | Dilution                   |             | Quench GPM  |              |
| Lb/Hr             |               | GPM                        | 6%<br>Final | 8%<br>Final | 10%<br>Final |
| 800               | 4.44          | 8.9                        | 10.6        | 4.0         | 0            |
| 900               | 5.00          | 10.1                       | 12.0        | 4.5         | 1 +          |
| 1000              | 5.56          | 11.2                       | 13.3        | 5.0         |              |
| 1100              | 6.11          | 12.3                       | 14.6        | 5.5         |              |
| 1200              | 6.67          | 13.4                       | 16.0        | 6.0         | 1            |
| 1300              | 7.22          | 14.5                       | 17.3        | 6.5         |              |
| 1400              | 7.78          | 15.6                       | 18.6        | 7.0         | 1            |
| 1500              | 8.33          | 16.8                       | 20.0        | 7.5         |              |
| 1600              | 8.89          | 17.9                       | 21.3        | 8.0         | 1            |
| 1700              | 9.44          | 19.0                       | 22.6        | 8.5         | İ            |
| 1800              | 10.0          | 20.1                       | 24.0        | 9.0         |              |
| 1900              | 10.6          | 21.2                       | 25.3        | 9.5         |              |
| 2000              | 11.1          | 22.4                       | 26.6        | 10.0        |              |
| 2200              | 12.2          | 24.6                       | 29.3        | 11.0        |              |
| 2400              | 13.3          | 26.8                       | 31.9        | 12.0        |              |
| 2600              | 14.4          | 29.1                       | 34.6        | 12.9        |              |
| · 2800            | 15.6          | 31.3                       | 37.3        | 13.9        |              |
| 3000              | 16.7          | 33.5                       | 39.9        | 14.9        |              |

| Stand                      | 61            | 12% Cooking Chamber Solids |             |             |              |
|----------------------------|---------------|----------------------------|-------------|-------------|--------------|
| Starch<br>Thruput<br>Lb/Hr | Slurry<br>GPM | Dilution                   |             | Quench GPM  |              |
| 1.07FH                     |               | GPM                        | 6%<br>Final | 8%<br>Final | 10%<br>Final |
| 800                        | 4.44          | 6.6                        | 13.3        | 6.7         | 2.7          |
| 900                        | 5.00          | 7.4                        | 15.0        | 7.5         | 3.0          |
| 1000                       | 5.56          | 8.3                        | 16.6        | 8.3         | 3.3          |
| 1100                       | 6.11          | 9.1                        | 18.3        | 9.2         | 3.7          |
| 1200                       | 6.67          | 9.9                        | 20.0        | 10.0        | 4.0          |
| 1300                       | 7.22          | 10.8                       | 21.6        | 10.8        | 4.3          |
| 1400                       | 7.78          | 11.6                       | 23.3        | 11.7        | 4.7          |
| 1500                       | 8.33          | 12.4                       | 25.0 -      | 12.5        | 5.0          |
| 1600                       | 8.89          | 13.2                       | 26.6        |             | 5.3          |
| 1700                       | 9.44          | 14.1                       | 28.3        | 14.1        | 5.7          |
| 1800                       | 10.0          | 14.9                       | 30.0        | 15.0        | 6.0          |
| 1900                       | 10.6          | 15.7                       | 31.6        | 15.8        | 6.4          |
| 2000                       | 11.1          | 16.6                       | 33.3        | 16.6        | 6.7          |
| 2200                       | 12.2          | 18.2                       | 36.6        | 18.3        | 7.4          |
| 2400                       | 13.3          | 19.9                       | 40.0        | 20.0        | 8.0          |
| 2600                       | 14.4          | 21.5                       | 43.3        | 21.6        | 8.7          |
| 2800                       | 15.6          | 23.2                       | 46.6        | 23.3        | 9.4          |
| 3000                       | 16.7          | 24.8                       | 49.9        | 25.0        | 10.0         |

## Size Press Starch Cooker Flow Settings

### 3 Lb/Gal Slurry (31.6% Solids)

Shaded data indicate settings at optimum cooking chamber flows, approximately 20-25 gpm (excl. condensate).

| Starch Slurry Thruput GPM |          | 14% Cooking Chamber Solids |             |             |              |  |
|---------------------------|----------|----------------------------|-------------|-------------|--------------|--|
|                           | Dilution | Quench GPM                 |             |             |              |  |
| Lb/Hr                     | Lb/Hr    | GPM                        | 6%<br>Final | 8%<br>Final | 10%<br>Final |  |
| 800                       | 4.44     | 5.0                        | 15.2        | 8.2         | 4.6          |  |
| 900                       | 5.00     | 5.6                        | 17.1        | 9.6         | 5.2          |  |
| 1000                      | 5.56     | 6.2                        | 19.0        | 10.7        | 5.7          |  |
| 1100                      | 6.11     | 6.8                        | 20.9        | 11.8        | 6.3          |  |
| 1200                      | 6.67     | 7.4                        | 22.8        | 12.8        | 6.9          |  |
| 1300                      | 7.22     | 8.1                        | 24.7        | 13.9        | 7.4          |  |
| 1400                      | 7.78     | 8.7                        | 26.6        | 15.0        | 8.0          |  |
| 1500                      | 8.33     | 9.3                        | 28.6        | 16.1        | 8.6          |  |
| 1600                      | 8.89     | 9.9                        | 30.5        | 17.1        | 9.2          |  |
| 1700                      | 9.44     | 10.5                       | 32.4        | 18.2        | 9.7          |  |
| 1800                      | 10.0     | 11.2                       | 34.3        | 19.3        | 10.3         |  |
| 1900                      | 10.6     | 11.8                       | 36.2        | 20.3        | 10.9         |  |
| 2000                      | 11.1     | 12.4                       | 38.1        | 21.4        | 11.5         |  |
| 2200                      | 12.2     | 13.6                       | 41.9        | 23.6        | 12.6         |  |
| 2400                      | 13.3     | 14.9                       | 45.7        | 25.7        | 13.7         |  |
| 2600                      | 14.4     | 16.1 🕶                     | 49.5        | 27.8        | 14.9         |  |
| 2800                      | 15.6     | 17.4                       | 53.3        | 30.0        | 16.0         |  |
| 3000                      | 16.7     | 18.6                       | 58.1        | 32.1        | 17.2         |  |

|                   |               | 169              | % Cooking Cha | mber Solids |              |  |
|-------------------|---------------|------------------|---------------|-------------|--------------|--|
| Starch<br>Thruput | Slurry<br>GPM | Dilution         |               | Quench GPM  |              |  |
| Lb/Hr             |               | GPM              | 6%<br>Final   | 8%<br>Final | 10%<br>Final |  |
| 800               | 4.44          | 3.7              | 16.7          | 10.0        | 6.0          |  |
| 900               | 5.00          | 4.2              | 18.7          | 11.2        | 6.8          |  |
| 1000              | 5.56          | 4.6              | 20.8          | 12.5        | 7.5          |  |
| 1100              | 6.11          | 5.1              | 22.9          | 13.7        | 8.3          |  |
| 1200              | 6.67          | 5.6              | 25.0          | 15.0        | 9.0          |  |
| 1300              | 7.22          | 6.0              | 27.1          | 16.2        | 9.8          |  |
| 1400              | 7.78          | 6.5              | 29.2          | 17.5        | 10.5         |  |
| 1500              | 8.33          | 7.0              | 31.2          | 18.7        | 11.3         |  |
| 1600              | 8.89          | <b>7.4</b> · · · | 33.3          | 20.0        | 12.0         |  |
| 1700              | 9.44          | 7.9              | 35.4          | · 21.2      | 12.8         |  |
| 1800              | 10.0          | 8.4              | 37.5          | 22.5        | 13.5         |  |
| 1900              | 10.6          | 8.8              | 39.6          | 23.7        | 14.3         |  |
| 2000              | 11.1          | 9.3              | 41.6          | 25.0        | 15.0         |  |
| 2200              | 12.2          | 10.2             | 45.8          | 27.5        | 16.5         |  |
| 2400              | 13.3          | 11.1             | 50.0          | 30.0        | 18.0         |  |
| 2600              | 14.4          | 12.1             | 54.1          | 32.5        | 19.5         |  |
| 2800              | 15.6          | 13.0             | 58.3          | 35.0        | 21.0         |  |
| 3000              | 16.7          | 13.9             | 62.5          | 37.5        | 22.6         |  |

### Size Press Starch Cooker Flow Settings

### 3 Lb/Gal Slurry (31.6% Solids)

Shaded data indicate settings at optimum cooking chamber flows, approximately 20-25 gpm (excl. condensate).

|                   | 01            | umber Solids |             |             |              |  |
|-------------------|---------------|--------------|-------------|-------------|--------------|--|
| Starch<br>Thruput | Slurry<br>GPM | Dilution     |             | Quench GPM  |              |  |
| Lb/Hr             |               | GPM          | 6%<br>Final | 8%<br>Final | 10%<br>Final |  |
| 800               | 4.44          | 2.7          | 17.8        | 11.1        | 7.1          |  |
| 900               | 5.00          | 3.1          | 20.0        | 12.5        | 8.0          |  |
| 1000              | 5.56          | 3.4          | 22.2        | 13.9        | 8.9          |  |
| 1100              | 6.11          | 3.8          | 24.4        | 15.3        | 9.8          |  |
| 1200              | 6.67          | 4.1          | 26.7        | 16.7        | 10.7         |  |
| 1300              | 7.22          | 4.5          | 28.9        | 18.1        | 11.6         |  |
| 1400              | 7.78          | 4.8          | 31.1        | 19.4        | 12.5         |  |
| 1500              | 8.33          | 5.2          | 33.3        | 20.8        | 13.4         |  |
| 1600              | 8.89          | 5.5          | 35.5        | 22.2        | 14.3         |  |
| 1700              | 9.44          | 5.8          | 37.8        | 23.6        | 15.1         |  |
| 1800              | 10.0          | 6.2          | 40.0        | 25.0        | 16.0         |  |
| 1900              | 10.6          | 6.5          | 42.2        | 26.4        | 16.9         |  |
| 2000              | 11.1          | 6.9          | 44.4        | 27.8        | 17.8         |  |
| 2200              | 12.2          | 7.6          | 48.9        | 30.5        | 19.6         |  |
| 2400              | 13.3          | 8.2          | 53.3        | 33.3        | 21.4         |  |
| 2600              | 14.4          | 8.9          | 57.8        | 36.1        | 23.2         |  |
| 2800 ·            | 15.6          | 9.6          | 62.2        | 38.9        | 24.9         |  |
| 3000              | 16.7          | 10.3         | 66.6        | 41.7        | 26.7         |  |

|      |               | 20% Cooking Chamber Solids |             |             |              |  |
|------|---------------|----------------------------|-------------|-------------|--------------|--|
|      | Slurry<br>GPM | Dilution                   |             | Quench GPM  |              |  |
|      |               | GPM                        | 6%<br>Final | 8%<br>Final | 10%<br>Final |  |
| 800  | 4.44          | 2.0                        | 18.7        | 12.0        | 8.0          |  |
| 900  | 5.00          | 2.2                        | 21.0        | 13.5        | 9.0          |  |
| 1000 | 5.56          | 2.5                        | 23.3        | 15.0        | 10.0         |  |
| 1100 | 6.11          | 2.7                        | 25.7        | 16.5        | 11.0         |  |
| 1200 | 6.67          | 3.0                        | 28.0        | 18.0        | 12.0         |  |
| 1300 | 7.22          | 3.2                        | 30.3        | 19.5        | 13.0         |  |
| 1400 | 7.78          | 3.5                        | 32.7        | 21.0        | 14.0         |  |
| 1500 | 8.33          | 3.7                        | 35.0        | 22.5        | 15.0         |  |
| 1600 | 8.89          | . <b>4.0</b>               | 37.3        | ::: 24.0    | 16.0         |  |
| 1700 | 9.44          | 4.2                        | 39.7        | 25.5        | 17.0         |  |
| 1800 | 10.0          | 4.4                        | 42.0        | 27.0        | 18.0         |  |
| 1900 | 10.6          | 4.7                        | 44.3        | 28.5        | 19.0         |  |
| 2000 | 11.1          | 4.9                        | 46.6        | 30.0        | 20.0         |  |
| 2200 | 12.2          | 5.4                        | 51.3        | 33.0        | 22.0         |  |
| 2400 | 13.3          | 5.9                        | 56.0        | 36.0        | 24.0         |  |
| 2600 | 14.4          | 6.4                        | 60.6        | 39.0        | 26.0         |  |
| 2800 | 15.6          | 6.9                        | 65.3        | 42.0        | 28.0         |  |
| 3000 | 16.7          | 7.4                        | 70.0        | 45.0        | 30.0         |  |

### Starch Cooker Flow Calculations

(1) CALCULATION OF STARCH COOKER SLURRY FLOW

(2) CALCULATION OF STARCH COOKER DILUTION WATER FLOW

DILUTION 
$$(gpm) = \frac{STARCH\ THRUPUT\ (lb/hr)}{60} \times \left[\frac{1}{1.15 \times CHAMBER\ CONC.(lb/gal)} - \frac{1}{SLURRY\ CONC.(lb/gal)}\right]$$

(3) CALCULATION OF STARCH COOKER QUENCH WATER FLOW

#### **Basis for Calculations**

- 1) Additional dilution due to steam condensation is estimated at 15% of the cooking chamber flow (slurry and dilution).
- 2) PERCENT STARCH vs POUNDS OF DRY STARCH/GALLON (SLURRY OR COOKED)

3) See starch tables for additional information.

## Cooker Starch Solids Adjustment

When operating the cooker, it may become necessary to make adjustments to the flow rates through the cooker to increase or decrease the solids of the cooked starch exiting the cooker. It is important to consider the operating conditions and requirements of the starch before selecting the flow stream to adjust.

#### Ouench (Post-Dilution) Water Flow Rate

The quench water has a two-fold purpose: it dilutes the cooked starch exiting the chamber to the desired final solids, and also cools the cooked starch to prevent overcooking or thermal degradation of the starch.

Increasing the quench water decreases the final solids and final starch temperature. Decreasing the quench water increases the final solids and final starch temperature.

Because the quench water does not affect temperature control or cooking chamber solids, it is the preferred flow stream to be used for making solids adjustment to the cooked starch.

#### Dilution (Pre-Dilution) Water Flow Rate

The dilution stream dilutes the concentrated slurry before it enters the cooking chamber and comes in contact with steam. Adjusting the dilution water flow rate will affect the temperature control momentarily while the cooker is processing starch. *Increasing* dilution water *decreases* final solids and *decreasing* dilution water *increases* final solids.

If the dilution water is increased too rapidly during cooking, the steam valve may not open fast enough to avoid dropping the cooking chamber temperature below the alarm limit. This may cause the cooker to shut down due to a temperature alarm condition.

Because the dilution water is heated in the cooking chamber, increasing dilution water will increase the temperature of the starch going to the hold tank (assuming the other flows and cooking temperature remain constant). Cooked starch should be held at 150°F or less in the tank.

It is important to keep these considerations in mind when adjusting the dilution water flow to compensate for final cooked starch solids.

#### Starch Slurry Flow Rate

The Moyno pump meters slurry through the cooker at a constant rate and, therefore, dictates the starch throughput or capacity of the cooker. Because of this, the slurry flow should be the <u>last</u> choice of flow rate adjustment when targeting a specific solids output. If, however, this is the only avenue for solids adjustment, *increasing* the slurry flow *increases* the starch solids exiting the cooker. Conversely, decreasing the flow rate decreases the final starch solids.

Also keep in mind that increasing slurry flow rate increases cooker throughput and decreasing slurry flow decreases cooker capacity. Be careful that when adjusting the slurry flow, the capacity of the cooker is not less than the required amount of starch being consumed at the machine.

## Cooked Starch Storage Temperature

Most starches should not be stored in the cooked starch storage tank above 150°F. Application requirements on the paper machine may also dictate the storage temperature of the cooked starch. National Starch should be consulted for any product-specific storage and use requirements. This is especially important with surface starch applications. The storage temperature of the cooked starch may be estimated by the following formula:

$$(S + D) CT + Q (WT) = (S + D + Q) FT$$

#### Where:

S = Slurry flow rate in gallons per minute
D = Dilution water flow rate in gallons per minute

CT = Cooking temperature in °F

Q = Quench water flow rate in gallons per minute
WT = Ambient water temperature in °F entering cooker

FT = Final starch temperature in °F

#### Example:

A cooker with flow rates of 6 gpm slurry, 15 gpm dilution water and 40 gpm quench water uses water at 60°F and cooks at 225°F. What is the final starch temperature?

$$(6 + 15) 225 + 40 (60) = (6 + 15 + 40) FT$$
  
FT = 117°F

## Pipe Losses for Viscous Liquids

The following equation can be used to estimate the amount of system back pressure on the discharge piping of a cooker or cooked starch pump. The viscosity of the fluid must be measured or converted to Centipoise and the flow of the fluid must be known. National Starch recommends that the cooker be operated at or below 40 psi in chamber back pressure to maintain accurate temperature and solids control.

### CALCULATION OF PIPE FRICTION LOSS IN PIPING FOR VISCOUS LIQUIDS

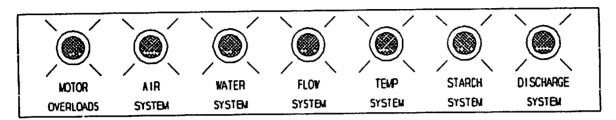
PRESSURE LOSS ( p.s.i. per 100 feet of pipe ) = FLOW ( galfmin ) × VISCOSITY( Centipolse ) × K Factor ( see below )

| Where "K" = | 0.1824    | for 1/2"  | Schedule 40 Pipe |
|-------------|-----------|-----------|------------------|
|             | 0.0592    | for 3/4"  | Schedule 40 Pipe |
|             | 0.0225    | for 1"    | Schedule 40 Pipe |
|             | 0.00753   | for 114"  | Schedule 40 Pipe |
|             | 0.00406   | for 11/2" | Schedule 40 Pipe |
|             | 0.001496  | for 2"    | Schedule 40 Pipe |
|             | 0.000735  | for 3"    | Schedule 40 Pipe |
|             | 0.0001039 | for 4"    | Schedule 40 Pipe |

NOTE: This equation calculates losses per 100 feet of pipe. If you have any multiple or part of 100 feet in length the resultant loss must be multiplied or divided accordingly.

EXAMPLE: A National C160 Starch Cooker is cooking 600 lb/hr using 2 lb/gal slurry of CATO® 232 at 4% chamber solids. The final cooked starch solids in the cooked starch tank are at 1%. The piping from the cooker to the tank is 200 feet long and is 3" schedule 40 pipe. CATO® 232 has a viscosity of 150 Centipoise at 1% solids at 140°F. Calculate the line loss to see if this will be excessive back pressure on the cooker.

SOLUTION Based on the 2 lb/gal slurry table on page 10 of the cooker manual, the cooker flow settings for 4% cooked solids and 1% final solids for 600 lb/hr cooker thruput are 5 gpm of slurry, 20.7 gpm of dilution, and 90 gpm of quench water. 15% of the chamber flow is added to the total flow due to condensate (3.87 gals). This is a total of 119.6 gallons of 1% cooked starch going to the tank. Using the above equation and inserting "K" as 0.000735 for 3" pipe we calculate:


$$psi/100 ft = (119.6 gpm) x (150 Centipoise) x (0.000735)$$
  
 $psi/100 ft = 13.19 psi$ 

Since there is 200 feet of piping, the back pressure will be  $2 \times 13.19$  or 26.38 psi which is acceptable for the cooker when added to the chamber back pressure shown when the cooker is running to the sewer.

## Cooker Troubleshooting

Failsafe System

National's Starch Cooker is designed to cook starch under optimum conditions only. The



cooker's PLC (programmable logic controller) continually monitors seven systems for proper operation. The status of each of these systems is indicated by its neon light on the panel box. When the cooker is running, a system's neon light is on when the system is not satisfied and off when it is satisfied.

Should any of the failsafe systems drop below their minimum safe operating thresholds, the cooker will "fail" and shut down immediately. The fail cycle lasts for 30 seconds, during which time the large red "Master Failure Light" is on and the system which caused the failure is indicated by the appropriate Making neon light.

Following a failure, the cooker attempts to restart. If the failure was caused by a momentary deficiency, the cooker should restart without difficulty. However, if the cooker repeatedly fails for one particular system, that system must be investigated for trouble.

It is important to understand what the seven failsafe systems are and how they are monitored:

- Motor Overload Monitors motor amperage draw.

  The water pump motor starter is equipped with thermal overload devices (heaters). The slurry pump motor is protected in two ways; first, through the variable frequency drive's fault conditions and second, by a temperature switch mounted in the motor winding.
- Air System Monitors regulated air pressure.

  Air from the cooker's air filter/regulator is fed to an adjustable pressure switch located inside the electrical panel box. The switch is typically set at 50 psi.
- Water System Monitors pumped water pressure.

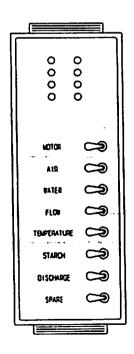
  A non-adjustable pressure switch set at 50 psi is mounted on the discharge side of the water booster pump.

- Flow System Monitors starch slurry flow through the cooker.

  A 4-20 mA signal is generated by the mag flowmeter in the starch slurry line. This signal is looped through a signal conditioning relay equipped with a small potentiometer located inside the electrical panel box. The potentiometer provides a blind setting for the low mA alarm trip point (low starch slurry flow). A light inside the relay is green when the flow switch is satisfied and red when there is insufficient flow. Settings are approximately 1 gpm for C80 cookers and 2 gpm for C160 cookers.
- Temperature System Monitors cooking temperature.

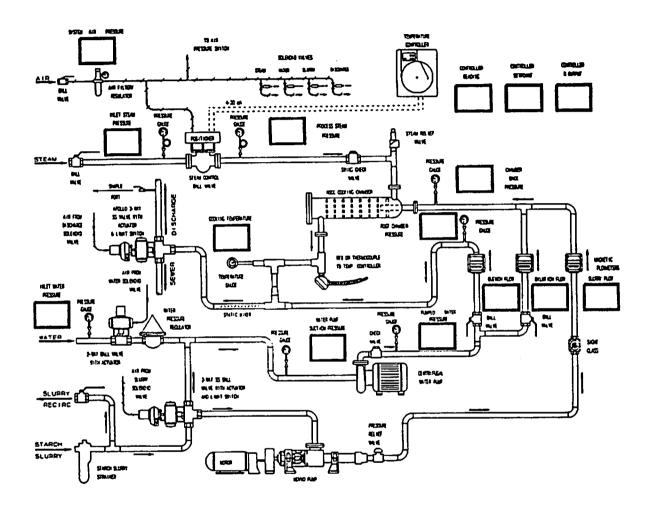
  The cooking temperature is sensed using a "J" thermocouple and fed to an electronic temperature recorder/controller equipped with an internal alarm switch. The alarm set point is accessed through the controller's configuration and is typically set at 195°F.
- Starch Slurry Valve Monitors 3-way starch slurry valve position.

  A position limit switch is mounted on top of the 3-way starch slurry valve's pneumatic actuator. When starch slurry is called for, this switch ensures the valve is in the proper position.
- Discharge Valve Monitors 3-way discharge valve position.


  A position limit switch is mounted on top of the 3-way discharge valve's pneumatic actuator.

  When the cooker should be feeding the cooked starch storage tank, this switch ensures the valve is in the proper position.

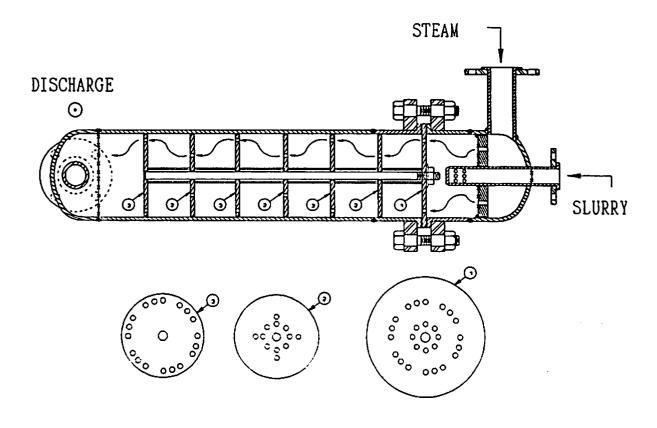
#### I/O SIMULATOR


If a cooker failure is caused by faulty instrumentation rather then an actual system deficiency, an I/O Simulator Module in the cooker's PLC can be used to bypass the defective device. The I/O Simulator contains eight small toggle switches, seven of which are labeled and can be used to bypass each of the seven failure systems. Flipping one of these switches "On" will bypass its respective system.

If the instrumentation on one of the failsafe systems is giving a false fail condition, that system can be bypassed in order to cook starch until the unit can be repaired. While a system is bypassed, its neon light blinks slowly to serve as a reminder of the problem. The bypassing feature should not be used during normal cooker operation since off-quality product or equipment damage can result.



# **Cooking Conditions Data Sheet**


When troubleshooting problems with the starch cooker, fill out the boxes in the diagram below to indicate the operating conditions of the cooker. Before notifying National Starch of cooker difficulties, please have this form completed to speed up the troubleshooting process.



| COMPANY/LOCATION                |                             |
|---------------------------------|-----------------------------|
| COOKER SERIAL NUMBER            |                             |
| SLURRY SOLIDS                   |                             |
| COOKING CHAMBER SOLIDS          | greather to a southern to a |
| FINAL STARCH SOLIDS (TANK)      |                             |
| FINAL STARCH TEMPERATURE (TANK) |                             |
| STARCH ADDITION RATE (GPM)      |                             |

## **Periodic Servicing**

### Strainers, Filters, and Cooking Chamber



Internal View of National Starch Cooking Chamber

Starch Slurry Strainer - Should be opened and cleaned at least once a shift. Unusual conditions may require cleaning the strainer more frequently.

Main Air Filter - The quality of the air supply will determine how often the air filter should be blown out. With a dry, clean air supply, once a week may be sufficient. A wet air supply may require blowing out the filter reservoir several times a day.

Cooking Chamber - There is a tendency for scale to build up in the cooking chamber. Scaling rate is usually a function of water hardness; the harder the water, the greater the tendency toward scaling. Inspect and clean chamber at least twice a year or if there is a noticeable increase in chamber backpressure.

Temperature Recorder/Controller - Replace charts daily and pen points as required.

### Lubrication

#### 1. Moyno Slurry Pump

A. <u>Ball Bearings</u> - Ball bearings in the Moyno pump are lubricated at the factory and do not require additional lubrication for the first 1500 hours of normal operation.

Any type of EP lithium soap grease is satisfactory for lubrication, however sodium or calcium base grease is not recommended.

The Robbins & Myers Moyno literature in the Appendix provides some specific bearing lubricants which are appropriate.

B. <u>Packing Gland</u> - When a gland is freshly packed, frequent adjustments of the packing nuts may be necessary to seat the packing. It is important to grease the packing often, but with limited quantities of grease until the packing gland is properly seated.

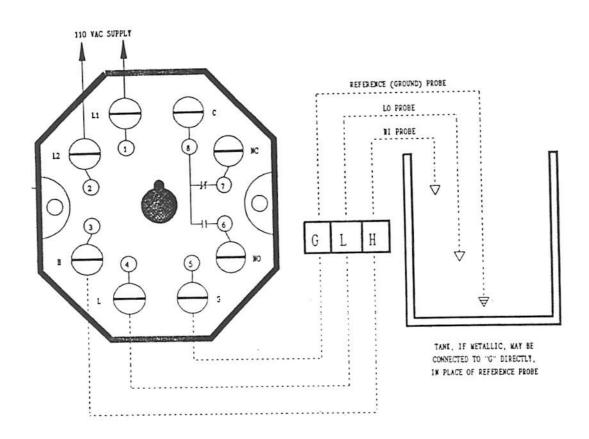
Any grease which is insoluble in water may be used to grease the packing gland.

#### 2. Aurora 341A Water Pump

Internal pump bearings are lubricated by the pumped fluid. Therefore, no external lubrication is required.

#### 3. Reliance Tigear C-Face Reducer

Proper oil level must be maintained to insure adequate lubrication of the gear reducer. For temperatures from 35-70°F, use SAE 20W grade oil, and for temperatures from 60-110°F, use SAE 30 grade oil.


Fill the oil reservoir in the gear reducer by removing the red plug which indicates oil level and filling with oil until it begins to overflow. Reinstall this plug when finished.

### 4. Electric Motors

Bearings of both electric motors should be lubricated using E.P. lithium-base grease.

Refer to Reliance and U.S. Motors manufacturing literature in the Appendix of this manual.

# Level Control Troubleshooting



### **Level Controller and Probes**

Some symptoms which point to possible level control or probe problems are:

- tank overflow because cooker fails to shut off at upper level probe
  - cooker fails to restart when level drops below lower level probe
  - generally erratic level control

If a problem with the Warrick level controller or with the level control probes is suspected, the first thing to do is to determine whether the problem is *internal* to the cooker or *external* to the cooker (probes, probe head, or lead wires).

#### To Troubleshoot:

- 1. At the L-G-H terminal block in the cooker, disconnect the three wires coming from the level control probe head located on the cooked starch storage tank.
- 2. Turn the cooker Operating Switch "On". Cooker should start up normally, go thru a complete startup cycle, and continue to run. If the cooker does not start with the probe lead wires disconnected, try replacing the plug-in Warrick level controller. If the cooker still does not start, refer to the General Troubleshooting Procedure.
- 3. If the cooker starts and continues to run through the entire startup cycle with level probe wires disconnected, turn the Operating Switch "Off". The cooker should shut down and stay down.
- 4. If the cooker performs properly in steps 2 & 3 above, restart the cooker and allow it to start up completely.
- 5. Connect an electrical jumper wire between terminals G & L on the L-G-H terminal strip. Momentarily jump (a few seconds) terminals G & H with another jumper. The cooker should shut down and stay down.
- 6. If the cooker passes step 5, remove the jumper wire between G & L. The cooker should restart and continue running. (Steps 5 & 6 above simulate the effect of hi and lo liquid levels making and breaking contact with the probes.)
- 7. If the cooker performs properly thru step 6, the trouble is apparently not in the cooker itself but external to the cooker in the level probes, probe head, or lead wires back to the cooker L-G-H terminal strip.
- 8. A common cause for the cooker not shutting off at the upper level probe is a poor ground connection to the tank or to the reference probe. The wire from "G" on the cooker terminal strip must make a good electrical connection to the metal tank. (If a non-conductive tank is used, the "G" wire must be attached to a metal probe which extends well below the lower working level (lo level probe) or attached to a metal valve at the tank outlet which is in continuous, intimate contact with the liquid.
- 9. If the cooker performs as expected in steps 2 & 3 above, but not in steps 5 & 6, try replacing the plug-in Warrick level control relay.
- 10. Make sure that the probe lead wire to the "L" terminal (usually a black wire) is connected to the *lo level* probe in the probe head and that the wire to the "H" terminal (usually a white wire) is connected to the *upper* probe.

Note: The hi level probe is always the shortest probe. The lo level probe is longer than the hi level probe, but shorter than the reference ground probe (if used in a non-metallic tank).

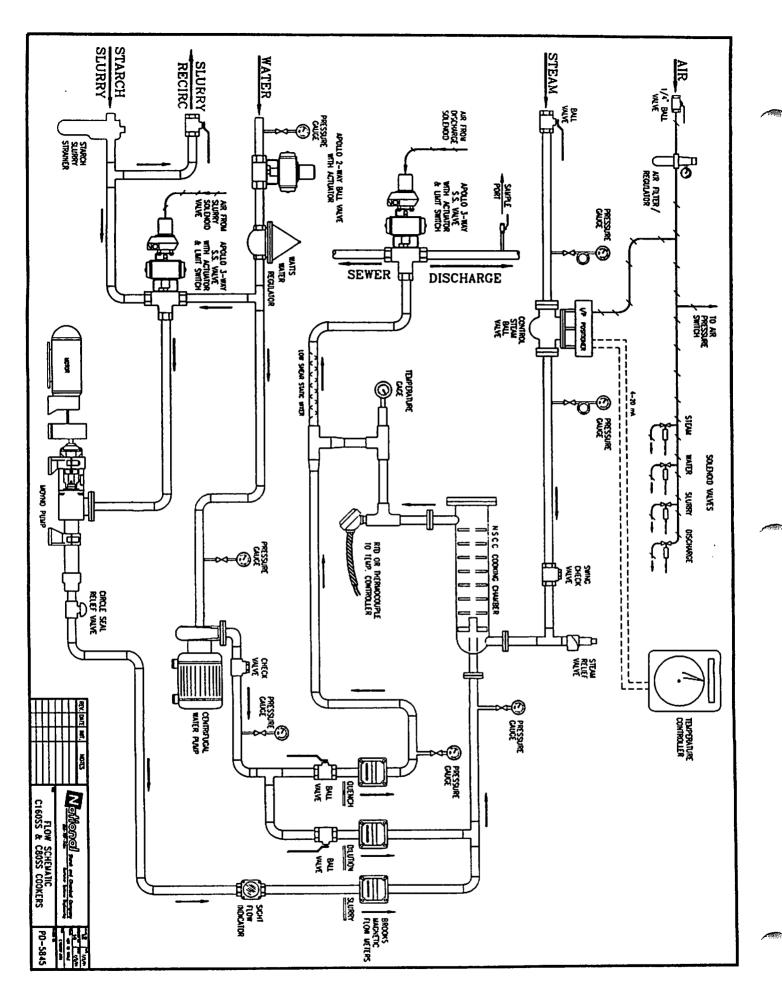
#### **Troubleshooting Hints**

- Be sure the wire(s) entering panel box are not cut. This may create a control short.
- Condensation in cooked starch storage tank *may* cause false level signals—place probe *head* outside enclosed tank.
- Starch build-up may cause false level signals. Change uncoated probes to coated probes.
- Extremely long runs of control wiring (200 feet or more) from the cooker to the cooked starch storage tank may cause false level signals. Relocate level control relay near storage tank and run 110V circuitry from relay to cooker. Be sure to mount the relay in a suitable NEMA-rated enclosure.
- Be sure the probe head is not located near the starch inlet line to the tank. Splashing from the inlet line may cause a false hi level signal.
- Any foam in the cooked starch storage tank acts as a conductive fluid. This may cause false control signals. If this occurs, lower the starch inlet line below the low level probe to prevent freefall/foaming of the starch. Foam is particularly a problem when a stilling well is used around the probes. In this case, the stilling well holds the foam in place and does not allow it to dissipate.

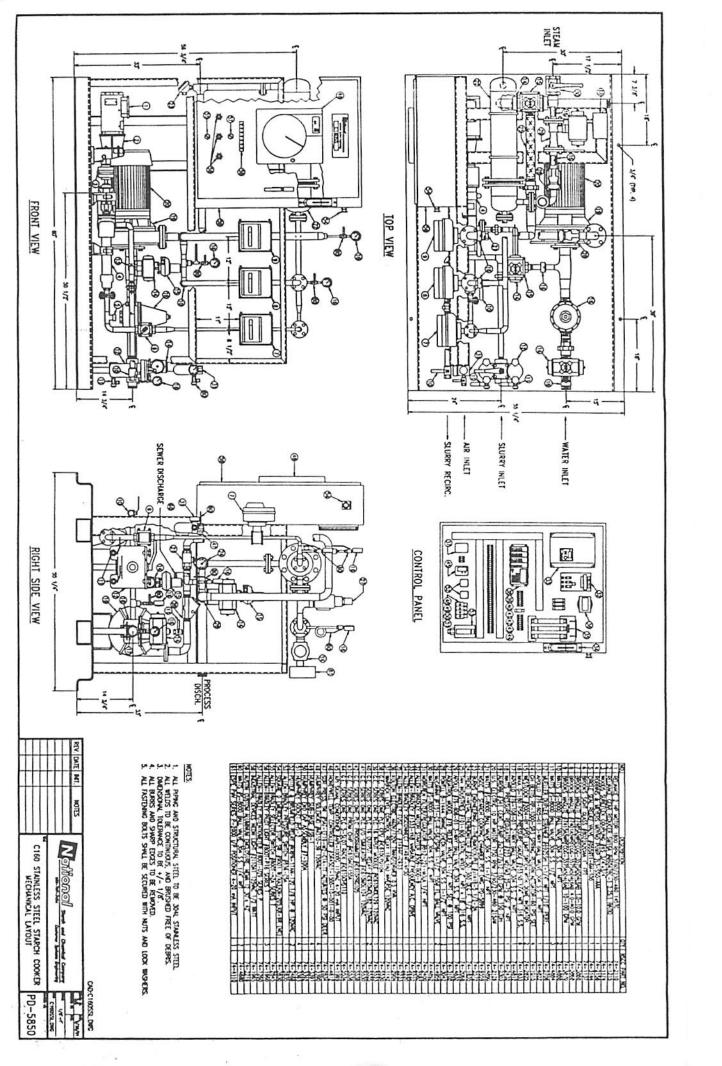
# Starch Table

| Degrees<br>Beaume  | Specific<br>Gravity | Percent<br>Starch | Density in<br>Lb per Gal | Pounds Dry<br>Starch per<br>Gallon |
|--------------------|---------------------|-------------------|--------------------------|------------------------------------|
|                    |                     |                   |                          |                                    |
| 0.0                | 1.0000              | 0.000             | 8.328                    | 0.000                              |
| 0.1                | 1.0007              | 0.178             | 8.334                    | 0.015                              |
| 0.2                | 1.0014              | 0.354             | 8.340                    | 0.030                              |
| 0.3                | 1.0021              | 0.531             | 8.346                    | 0.044                              |
| 0.4                | 1.0028              | 0.708             | 8.352                    | 0.059                              |
| 0.5                | 1.0035              | 0.885             | 8.357                    | 0.074                              |
| 0.6                | 1.0041              | 1.062             | 8.362                    | 0.089                              |
| 0.7                | 1.0048              | 1.239             | 8.368                    | 0.104                              |
| 0.8                | 1.0055              | 1.416             | 8.374                    | 0.119                              |
| 0.9                | 1.0062              | 1.593             | 8.380                    | 0.133                              |
| 1.0                | 1.0069              | 1.777             | 8.386                    | 0.149                              |
| 1.1                | 1.0076              | 1.955             | 8.392                    | 0.164                              |
| 1.2                | 1.0083              | 2.132             | 8.397                    | 0.179                              |
| 1.3                | 1.0090              | 2.310             | 8.403                    | 0.194                              |
| 1.4                | 1.0097              | 2.488             | 8.409                    | 0.209                              |
| ™ <del>™</del> 1.5 | 1.0105              | 2.666             | 8.416                    | 0.224                              |
| 1.6                | 1.0112              | 2.843             | 8.422                    | 0.239                              |
| 1.7                | 1.0119              | 3.021             | 8.427                    | 0.254                              |
| 1.8                | 1.0126              | 3.199             | 8.433                    | 0.270                              |
| 1.9                | 1.0133              | 3.376             | 8.439                    | 0.285                              |
| 2.0                | 1.0140              | 3.554             | 8.445                    | 0.300                              |
| 2.1                | 1.0147              | 3.732             | 8.451                    | 0.315                              |
| 2.2                | 1.0154              | 3.909             | 8.456                    | 0.331                              |
| 2.3                | 1.0161              | 4.087             | 4.462                    | 0.346                              |
| 2.4                | 1.0168              | 4.265             | 8.468                    | 0.361                              |
| 2.5                | 1.0176              | 4.443             | 8.475                    | 0.377                              |
| 2.6                | 1.0183              | 4.620             | 8.481                    | 0.392                              |
| 2.7                | 1.0190              | 4.798             | 8.486                    | 0.407                              |
| 2.8                | 1.0197              | 4.976             | 8.492                    | 0.423                              |
| 2.9                | 1.0204              | 5.153             | 8.498                    | 0.438                              |
| 3.0                | 1.0211              | 5.331             | 8.504                    | 0:453                              |
| 3.1                | 1.0218              | 5.509             | 8.510                    | 0.469                              |
| 3.2                | 1.0226              | 5.686             | 8.516                    | 0.484                              |
| 3.3                | 1.0233              | 5.864             | 8.522                    | 0.500                              |
| 3.4                | 1.0241              | 6.042             | 8.529                    | 0.515                              |
| 3.5                | 1.0248              | 6.220             | 8.535                    | 0.531                              |
| 3.6                | 1.0255              | 6.397             | 8.541                    | 0.546                              |
| 3.7                | 1.0263              | 6.575             | 8.547                    | 0.562                              |
| 3.8                | 1.0270              | 6.753             | 8.553                    | 0.578                              |
| 3.9                | 1.0278              | 6.930             | 8.560                    | 0.593                              |
| J.0                |                     |                   |                          |                                    |

| 4.0 1.0285 7.108 8.566 0.609 4.1 1.0292 7.286 8.571 0.624 4.2 1.0300 7.463 8.578 0.640 4.3 1.0307 7.641 8.584 0.656 4.4 1.0314 7.819 8.590 0.672 4.5 1.0322 7.997 8.596 0.687 4.6 1.0329 8.174 8.602 0.703 4.7 1.0336 8.352 8.608 0.719 4.8 1.0343 8.530 8.614 0.735 4.9 1.0351 8.707 8.621 0.751 5.0 1.0358 8.885 8.626 0.766 5.1 1.0366 9.063 8.633 0.782 5.2 1.0373 9.240 8.639 0.798 5.3 1.0381 9.418 8.646 0.814 5.4 1.0388 9.596 8.651 0.830 5.5 1.0396 9.774 8.658 0.846 5.6 1.0403 9.951 8.664 0.862 5.7 1.0411 10.129 8.671 0.878 5.8 1.0418 10.307 8.676 0.894 5.9 1.0426 10.484 8.683 0.910 6.0 1.0433 10.662 8.689 0.926 6.1 1.0443 10.307 8.676 0.894 5.9 1.0426 10.484 8.683 0.910 6.0 1.0433 10.662 8.699 0.926 6.1 1.0441 10.840 8.696 0.943 6.2 1.0448 11.017 8.701 0.959 6.3 1.0456 11.195 8.708 0.975 6.4 1.0463 11.373 8.714 0.991 6.5 1.0478 11.728 8.720 1.007 6.6 1.0478 11.728 8.720 1.007 6.6 1.0478 11.728 8.720 1.007 6.7 1.0486 11.906 8.733 1.040 6.8 1.0493 12.084 8.739 1.056 6.9 1.0501 12.261 8.745 1.072 7.0 1.0508 12.439 8.751 1.089 7.1 1.0516 12.617 8.758 1.105 7.2 1.0523 12.794 8.758 1.105 7.3 1.0531 12.972 8.770 1.138 7.4 1.0539 13.150 8.777 1.154 7.5 1.0547 13.328 8.784 1.171 7.6 1.0554 13.505 8.790 1.187 7.7 1.0562 13.663 8.790 1.237 7.9 1.0577 14.038 8.809 1.237 | Degrees<br>Beaume | Specific<br>Gravity | Percent<br>Starch | Density in<br>Lb per Gal | Pounds Dry<br>Starch per<br>Gallon |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|-------------------|--------------------------|------------------------------------|
| 4.1 1.0292 7.286 8.571 0.624 4.2 1.0300 7.463 8.578 0.640 4.3 1.0307 7.641 8.584 0.656 4.4 1.0314 7.819 8.590 0.672 4.5 1.0322 7.997 8.596 0.687 4.6 1.0329 8.174 8.602 0.703 4.7 1.0336 8.352 8.608 0.719 4.8 1.0343 8.530 8.614 0.735 4.9 1.0351 8.707 8.621 0.751 5.0 1.0358 8.885 8.626 0.766 5.1 1.0366 9.063 8.633 0.782 5.2 1.0373 9.240 8.639 0.798 5.3 1.0381 9.418 8.646 0.814 5.4 1.0396 9.774 8.651 0.830 5.5 1.0396 9.774 8.658 0.846 5.6 1.0403 9.951 8.664 0.862 5.7 1.0411 10.129 8.671 0.878 5.8 1.0418 10.307 8.662 0.894 5.9 1.0426 10.484 8.683 0.910 6.0 1.0433 10.662 8.689 0.926 6.1 1.0441 10.840 8.696 0.943 6.2 1.0448 11.017 8.701 0.959 6.3 1.0456 11.95 8.708 0.975 6.4 1.0463 11.373 8.714 0.991 6.5 1.0471 11.551 8.720 1.007 6.6 1.0471 11.551 8.720 1.007 6.6 1.0478 11.591 8.720 1.007 6.6 1.0478 11.591 8.720 1.007 6.7 1.0486 11.906 8.733 1.040 6.8 1.0493 12.084 8.739 1.056 6.9 1.0501 12.261 8.745 1.072 7.0 1.0508 12.439 8.751 1.089 7.1 1.0516 12.617 8.758 1.089 7.2 1.0523 12.994 8.764 1.121 2.20 7.8 1.0570 13.861 8.803 1.220 7.8 1.0570 13.861 8.803 1.220 7.8 1.0570 13.861 8.803 1.220 7.8 1.0570 13.861 8.803 1.220                                                                                                                                                  |                   |                     |                   |                          |                                    |
| 4.2 1.0300 7.463 8.578 0.640 4.3 1.0307 7.641 8.584 0.656 4.4 1.0314 7.819 8.590 0.672 4.5 1.0322 7.997 8.596 0.687 4.6 1.0329 8.174 8.602 0.703 4.7 1.0336 8.352 8.608 0.719 4.8 1.0343 8.530 8.614 0.735 4.9 1.0351 8.707 8.621 0.751  5.0 1.0358 8.885 8.626 0.766 5.1 1.0366 9.063 8.633 0.782 5.2 1.0373 9.240 8.639 0.798 5.3 1.0381 9.418 8.646 0.814 5.4 1.0388 9.596 8.651 0.830 5.5 1.0396 9.774 8.658 0.846 5.6 1.0403 9.951 8.664 0.862 5.7 1.0411 10.129 8.671 0.878 5.8 1.0418 10.307 8.676 0.894 5.9 1.0426 10.484 8.683 0.910  6.0 1.0433 10.662 8.689 0.926 6.1 1.0441 10.840 8.696 0.943 6.2 1.0448 11.017 8.701 0.959 6.3 1.0456 11.195 8.708 0.975 6.4 1.0463 11.373 8.714 0.991 6.5 1.0471 11.551 8.720 1.007 6.6 1.0478 11.728 8.726 1.023 6.7 1.0478 11.728 8.726 1.023 6.7 1.0486 11.906 8.733 1.040 6.8 1.0493 12.084 8.739 1.056 6.9 1.0501 12.261 8.745 1.089 7.1 1.0516 12.617 8.758 1.089 7.1 1.0539 13.150 8.777 1.154 7.5 1.0557 13.861 8.803 1.220 7.8 1.0570 13.861 8.803 1.220                                                                                                                                                                                                                                                                                                         |                   |                     |                   |                          |                                    |
| 4.3 1.0307 7.641 8.584 0.656 4.4 1.0314 7.819 8.590 0.672 4.5 1.0322 7.997 8.596 0.687 4.6 1.0329 8.174 8.602 0.703 4.7 1.0336 8.352 8.608 0.719 4.8 1.0343 8.530 8.614 0.735 4.9 1.0351 8.707 8.621 0.751  5.0 1.0358 8.885 8.626 0.766 5.1 1.0366 9.063 8.633 0.782 5.2 1.0373 9.240 8.639 0.798 5.3 1.0381 9.418 8.646 0.814 5.4 1.0388 9.596 8.651 0.830 5.5 1.0396 9.774 8.658 0.846 5.6 1.0403 9.951 8.664 0.862 5.7 1.0411 10.129 8.671 0.878 5.8 1.0418 10.307 8.676 0.894 5.9 1.0426 10.484 8.683 0.910  6.0 1.0433 10.662 8.689 0.926 6.1 1.0441 10.840 8.696 0.943 6.2 1.0448 11.017 8.701 0.959 6.3 1.0456 11.195 8.708 0.975 6.4 1.0463 11.373 8.714 0.991 6.5 1.0471 11.551 8.708 0.975 6.4 1.0488 11.917 8.708 0.975 6.5 1.0471 11.551 8.720 1.007 6.6 1.0478 11.728 8.726 1.023 6.7 1.0486 11.996 8.733 1.040 6.8 1.0493 12.084 8.739 1.056 6.9 1.0501 12.261 8.745 1.072  7.0 1.0508 12.439 8.751 1.089 7.1 1.0516 12.617 8.758 1.105 7.2 1.0523 12.794 8.764 1.121 2.27 7.3 1.0539 13.150 8.777 1.154 7.5 1.0547 13.328 8.784 1.171 7.6 1.0554 13.505 8.790 1.187 7.7 1.0562 13.683 8.796 1.204 7.8 1.0570 13.861 8.803 1.220 7.8 1.057                                                                                                                                                                |                   |                     |                   |                          |                                    |
| 4.4       1.0314       7.819       8.590       0.672         4.5       1.0322       7.997       8.596       0.667         4.6       1.0329       8.174       8.602       0.703         4.7       1.0336       8.352       8.608       0.719         4.8       1.0343       8.530       8.614       0.735         4.9       1.0351       8.707       8.621       0.751         5.0       1.0358       8.885       8.626       0.766         5.1       1.0366       9.063       8.633       0.782         5.2       1.0373       9.240       8.639       0.798         5.3       1.0381       9.418       8.646       0.814         5.4       1.0388       9.596       8.651       0.830         5.5       1.0396       9.774       8.658       0.846         5.6       1.0403       9.951       8.664       0.862         5.7       1.0411       10.129       8.671       0.878         5.8       1.0418       10.307       8.676       0.894         5.9       1.0426       10.484       8.683       0.910         6.1       1.0441       10.                                                                                                                                                                                                                                                                            |                   |                     |                   |                          |                                    |
| 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                     |                   |                          |                                    |
| 4.6       1.0329       8.174       8.602       0.703         4.7       1.0336       8.352       8.608       0.719         4.8       1.0343       8.530       8.614       0.735         4.9       1.0351       8.707       8.621       0.751         5.0       1.0358       8.885       8.626       0.766         5.1       1.0366       9.063       8.633       0.782         5.2       1.0373       9.240       8.639       0.798         5.3       1.0381       9.418       8.646       0.814         5.4       1.0388       9.596       8.651       0.830         5.5       1.0396       9.774       8.658       0.846         5.6       1.0403       9.951       8.664       0.862         5.7       1.0411       10.129       8.671       0.878         5.8       1.0418       10.307       8.676       0.894         5.9       1.0426       10.484       8.683       0.910         6.0       1.0433       10.662       8.689       0.926         6.1       1.0441       10.840       8.696       0.943         6.2       1.0488       1                                                                                                                                                                                                                                                                            |                   |                     |                   |                          |                                    |
| 4.7       1.0336       8.352       8.608       0.719         4.8       1.0343       8.530       8.614       0.735         4.9       1.0351       8.707       8.621       0.751         5.0       1.0358       8.885       8.626       0.766         5.1       1.0366       9.063       8.633       0.782         5.2       1.0373       9.240       8.639       0.798         5.3       1.0381       9.418       8.646       0.814         5.4       1.0388       9.596       8.651       0.830         5.5       1.0396       9.774       8.658       0.846         5.6       1.0403       9.951       8.664       0.862         5.7       1.0411       10.129       8.671       0.878         5.8       1.0418       10.307       8.676       0.894         5.9       1.0426       10.484       8.683       0.910         6.0       1.0433       10.662       8.689       0.926         6.1       1.0441       10.840       8.696       0.943         6.2       1.0448       11.017       8.701       0.995         6.3       1.0471                                                                                                                                                                                                                                                                                   |                   |                     |                   |                          |                                    |
| 4.8         1.0343         8.530         8.614         0.735           4.9         1.0351         8.707         8.621         0.751           5.0         1.0358         8.885         8.626         0.766           5.1         1.0366         9.063         8.633         0.782           5.2         1.0373         9.240         8.639         0.798           5.3         1.0381         9.418         8.646         0.814           5.4         1.0388         9.596         8.651         0.830           5.5         1.0396         9.774         8.658         0.846           5.6         1.0403         9.951         8.664         0.862           5.7         1.0411         10.129         8.671         0.878           5.8         1.0418         10.307         8.676         0.894           5.9         1.0426         10.484         8.683         0.910           6.0         1.0433         10.662         8.689         0.926           6.1         1.0441         10.840         8.696         0.943           6.2         1.0448         11.017         8.708         0.975           6.3         1                                                                                                                                                                                             |                   |                     |                   |                          |                                    |
| 4.9       1.0351       8.707       8.621       0.751         5.0       1.0358       8.885       8.626       0.766         5.1       1.0366       9.063       8.633       0.782         5.2       1.0373       9.240       8.639       0.798         5.3       1.0381       9.418       8.646       0.814         5.4       1.0388       9.596       8.651       0.830         5.5       1.0396       9.774       8.658       0.846         5.6       1.0403       9.951       8.664       0.862         5.7       1.0411       10.129       8.671       0.878         5.8       1.0418       10.307       8.676       0.894         5.9       1.0426       10.484       8.683       0.910         6.0       1.0433       10.662       8.689       0.926         6.1       1.0441       10.840       8.696       0.943         6.2       1.0448       11.017       8.701       0.959         6.3       1.0456       11.195       8.708       0.975         6.4       1.0463       11.373       8.714       0.991         6.5       1.0471 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                    |                   |                     |                   |                          |                                    |
| 5.0         1.0358         8.885         8.626         0.766           5.1         1.0366         9.063         8.633         0.782           5.2         1.0373         9.240         8.639         0.798           5.3         1.0381         9.418         8.646         0.814           5.4         1.0388         9.596         8.651         0.830           5.5         1.0396         9.774         8.658         0.846           5.6         1.0403         9.951         8.664         0.862           5.7         1.0411         10.129         8.671         0.878           5.8         1.0418         10.307         8.676         0.894           5.9         1.0426         10.484         8.683         0.910           6.0         1.0433         10.662         8.689         0.926           6.1         1.0441         10.840         8.696         0.943           6.2         1.0448         11.017         8.701         0.959           6.3         1.0456         11.195         8.708         0.975           6.4         1.0463         11.373         8.714         0.991           6.5 <td< td=""><td>4.8</td><td>1.0343</td><td>8.530</td><td>8.614</td><td>0.735</td></td<>                                                                                                              | 4.8               | 1.0343              | 8.530             | 8.614                    | 0.735                              |
| 5.1         1.0366         9.063         8.633         0.782           5.2         1.0373         9.240         8.639         0.798           5.3         1.0381         9.418         8.646         0.814           5.4         1.0388         9.596         8.651         0.830           5.5         1.0396         9.774         8.658         0.846           5.6         1.0403         9.951         8.664         0.862           5.7         1.0411         10.129         8.671         0.878           5.8         1.0418         10.307         8.676         0.894           5.9         1.0426         10.484         8.683         0.910           6.0         1.0433         10.662         8.689         0.926           6.1         1.0441         10.840         8.696         0.943           6.2         1.0448         11.017         8.701         0.959           6.3         1.0456         11.195         8.708         0.975           6.4         1.0463         11.373         8.714         0.991           6.5         1.0471         11.551         8.720         1.007           6.6 <t< td=""><td>4.9</td><td>1.0351</td><td>8.707</td><td>8.621</td><td>0.751</td></t<>                                                                                                               | 4.9               | 1.0351              | 8.707             | 8.621                    | 0.751                              |
| 5.2         1.0373         9.240         8.639         0.798           5.3         1.0381         9.418         8.646         0.814           5.4         1.0388         9.596         8.651         0.830           5.5         1.0396         9.774         8.658         0.846           5.6         1.0403         9.951         8.664         0.862           5.7         1.0411         10.129         8.671         0.878           5.8         1.0418         10.307         8.676         0.894           5.9         1.0426         10.484         8.683         0.910           6.0         1.0433         10.662         8.689         0.926           6.1         1.0441         10.840         8.696         0.943           6.2         1.0448         11.017         8.701         0.959           6.3         1.0456         11.195         8.708         0.975           6.4         1.0463         11.373         8.714         0.991           6.5         1.0471         11.551         8.720         1.007           6.6         1.0478         11.728         8.726         1.023           6.7         <                                                                                                                                                                                         | 5.0               | 1.0358              | 8.885             | 8.626                    | 0.766                              |
| 5.3         1.0381         9.418         8.646         0.814           5.4         1.0388         9.596         8.651         0.830           5.5         1.0396         9.774         8.658         0.846           5.6         1.0403         9.951         8.664         0.862           5.7         1.0411         10.129         8.671         0.878           5.8         1.0418         10.307         8.676         0.894           5.9         1.0426         10.484         8.683         0.910           6.0         1.0433         10.662         8.689         0.926           6.1         1.0441         10.840         8.696         0.943           6.2         1.0448         11.017         8.701         0.959           6.3         1.0456         11.195         8.708         0.975           6.4         1.0463         11.373         8.714         0.991           6.5         1.0471         11.551         8.720         1.007           6.6         1.0478         11.728         8.726         1.023           6.7         1.0486         11.906         8.733         1.040           6.8                                                                                                                                                                                                  | 5.1               | 1.0366              | 9.063             | 8.633                    | 0.782                              |
| 5.4         1.0388         9.596         8.651         0.830           5.5         1.0396         9.774         8.658         0.846           5.6         1.0403         9.951         8.664         0.862           5.7         1.0411         10.129         8.671         0.878           5.8         1.0418         10.307         8.676         0.894           5.9         1.0426         10.484         8.683         0.910           6.0         1.0433         10.662         8.689         0.926           6.1         1.0441         10.840         8.696         0.943           6.2         1.0448         11.017         8.701         0.959           6.3         1.0456         11.195         8.708         0.975           6.4         1.0463         11.373         8.714         0.991           6.5         1.0471         11.551         8.720         1.007           6.6         1.0478         11.728         8.726         1.023           6.7         1.0486         11.906         8.733         1.040           6.8         1.0493         12.084         8.739         1.056           6.9                                                                                                                                                                                                 | 5.2               | 1.0373              | 9.240             | 8.639                    | 0.798                              |
| 5.5         1.0396         9.774         8.658         0.846           5.6         1.0403         9.951         8.664         0.862           5.7         1.0411         10.129         8.671         0.878           5.8         1.0418         10.307         8.676         0.894           5.9         1.0426         10.484         8.683         0.910           6.0         1.0433         10.662         8.689         0.926           6.1         1.0441         10.840         8.696         0.943           6.2         1.0448         11.017         8.701         0.959           6.3         1.0456         11.195         8.708         0.975           6.4         1.0463         11.373         8.714         0.991           6.5         1.0471         11.551         8.720         1.007           6.6         1.0478         11.728         8.726         1.023           6.7         1.0486         11.906         8.733         1.040           6.8         1.0493         12.084         8.739         1.056           6.9         1.0501         12.261         8.745         1.072           7.0                                                                                                                                                                                                | 5.3               | 1.0381              | 9.418             | 8.646                    | 0.814                              |
| 5.6         1.0403         9.951         8.664         0.862           5.7         1.0411         10.129         8.671         0.878           5.8         1.0418         10.307         8.676         0.894           5.9         1.0426         10.484         8.683         0.910           6.0         1.0433         10.662         8.689         0.926           6.1         1.0441         10.840         8.696         0.943           6.2         1.0448         11.017         8.701         0.959           6.3         1.0456         11.195         8.708         0.975           6.4         1.0463         11.373         8.714         0.991           6.5         1.0471         11.551         8.720         1.007           6.6         1.0478         11.728         8.726         1.023           6.7         1.0486         11.906         8.733         1.040           6.8         1.0493         12.084         8.739         1.056           6.9         1.0501         12.261         8.745         1.072           7.0         1.0508         12.439         8.751         1.089           7.1                                                                                                                                                                                               | 5.4               | 1.0388              | 9.596             | 8.651                    | 0.830                              |
| 5.6         1.0403         9.951         8.664         0.862           5.7         1.0411         10.129         8.671         0.878           5.8         1.0418         10.307         8.676         0.894           5.9         1.0426         10.484         8.683         0.910           6.0         1.0433         10.662         8.689         0.926           6.1         1.0441         10.840         8.696         0.943           6.2         1.0448         11.017         8.701         0.959           6.3         1.0456         11.195         8.708         0.975           6.4         1.0463         11.373         8.714         0.991           6.5         1.0471         11.551         8.720         1.007           6.6         1.0478         11.728         8.726         1.023           6.7         1.0486         11.906         8.733         1.040           6.8         1.0493         12.084         8.739         1.056           6.9         1.0506         12.617         8.758         1.105           7.2         1.0523         12.794         8.764         1.121           7.3                                                                                                                                                                                               | 5.5               | 1.0396              | 9.774             | 8.658                    | 0.846                              |
| 5.7         1.0411         10.129         8.671         0.878           5.8         1.0418         10.307         8.676         0.894           5.9         1.0426         10.484         8.683         0.910           6.0         1.0433         10.662         8.689         0.926           6.1         1.0441         10.840         8.696         0.943           6.2         1.0448         11.017         8.701         0.959           6.3         1.0456         11.195         8.708         0.975           6.4         1.0463         11.373         8.714         0.991           6.5         1.0471         11.551         8.720         1.007           6.6         1.0478         11.728         8.726         1.023           6.7         1.0486         11.906         8.733         1.040           6.8         1.0493         12.084         8.739         1.056           6.9         1.0501         12.261         8.745         1.072           7.0         1.0508         12.439         8.751         1.089           7.1         1.0516:         12.617         8.768         1.105           7.2                                                                                                                                                                                             |                   | •^~ <b>~</b> 1.0403 | 9.951             | 8.664                    | 0.862                              |
| 5.8         1.0418         10.307         8.676         0.894           5.9         1.0426         10.484         8.683         0.910           6.0         1.0433         10.662         8.689         0.926           6.1         1.0441         10.840         8.696         0.943           6.2         1.0448         11.017         8.701         0.959           6.3         1.0456         11.195         8.708         0.975           6.4         1.0463         11.373         8.714         0.991           6.5         1.0471         11.551         8.720         1.007           6.6         1.0478         11.728         8.726         1.023           6.7         1.0486         11.906         8.733         1.040           6.8         1.0493         12.084         8.739         1.056           6.9         1.0501         12.261         8.745         1.072           7.0         1.0508         12.439         8.751         1.089           7.1         1.0516         12.617         8.758         1.105           7.2         1.0523         12.794         8.764         1.121           7.3                                                                                                                                                                                              |                   | 1.0411              | 10.129            | 8.671                    | 0.878                              |
| 5.9       1.0426       10.484       8.683       0.910         6.0       1.0433       10.662       8.689       0.926         6.1       1.0441       10.840       8.696       0.943         6.2       1.0448       11.017       8.701       0.959         6.3       1.0456       11.195       8.708       0.975         6.4       1.0463       11.373       8.714       0.991         6.5       1.0471       11.551       8.720       1.007         6.6       1.0478       11.728       8.726       1.023         6.7       1.0486       11.906       8.733       1.040         6.8       1.0493       12.084       8.739       1.056         6.9       1.0501       12.261       8.745       1.072         7.0       1.0508       12.439       8.751       1.089         7.1       1.0516       12.617       8.758       1.105         7.2       1.0523       12.794       8.764       1.121         7.3       1.0531       12.972       8.770       1.138         7.4       1.0539       13.150       8.777       1.154         7.5       1.0547                                                                                                                                                                                                                                                                         |                   |                     |                   | 8.676                    | 0.894                              |
| 6.1       1.0441       10.840       8.696       0.943         6.2       1.0448       11.017       8.701       0.959         6.3       1.0456       11.195       8.708       0.975         6.4       1.0463       11.373       8.714       0.991         6.5       1.0471       11.551       8.720       1.007         6.6       1.0478       11.728       8.726       1.023         6.7       1.0486       11.906       8.733       1.040         6.8       1.0493       12.084       8.739       1.056         6.9       1.0501       12.261       8.745       1.072         7.0       1.0508       12.439       8.751       1.089         7.1       1.0516       12.617       8.758       1.105         7.2       1.0523       12.794       8.764       1.121         7.3       1.0531       12.972       8.770       1.138         7.4       1.0539       13.150       8.777       1.154         7.5       1.0547       13.328       8.784       1.171         7.6       1.0554       13.505       8.790       1.187         7.7       1.0562                                                                                                                                                                                                                                                                         | 5.9               | 1.0426              |                   | 8.683                    | 0.910                              |
| 6.1       1.0441       10.840       8.696       0.943         6.2       1.0448       11.017       8.701       0.959         6.3       1.0456       11.195       8.708       0.975         6.4       1.0463       11.373       8.714       0.991         6.5       1.0471       11.551       8.720       1.007         6.6       1.0478       11.728       8.726       1.023         6.7       1.0486       11.906       8.733       1.040         6.8       1.0493       12.084       8.739       1.056         6.9       1.0501       12.261       8.745       1.072         7.0       1.0508       12.439       8.751       1.089         7.1       1.0516       12.617       8.758       1.105         7.2       1.0523       12.794       8.764       1.121         7.3       1.0531       12.972       8.770       1.138         7.4       1.0539       13.150       8.777       1.154         7.5       1.0547       13.328       8.784       1.171         7.6       1.0554       13.505       8.790       1.187         7.7       1.0562                                                                                                                                                                                                                                                                         | 6.0               | 1.0433              | 10.662            | 8.689                    | 0.926                              |
| 6.3       1.0456       11.195       8.708       0.975         6.4       1.0463       11.373       8.714       0.991         6.5       1.0471       11.551       8.720       1.007         6.6       1.0478       11.728       8.726       1.023         6.7       1.0486       11.906       8.733       1.040         6.8       1.0493       12.084       8.739       1.056         6.9       1.0501       12.261       8.745       1.072         7.0       1.0508       12.439       8.751       1.089         7.1       1.0516       12.617       8.758       1.105         7.2       1.0523       12.794       8.764       1.121         7.3       1.0531       12.972       8.770       1.138         7.4       1.0539       13.150       8.777       1.154         7.5       1.0547       13.328       8.784       1.171         7.6       1.0554       13.505       8.790       1.187         7.7       1.0562       13.683       8.796       1.204         7.8       1.0570       13.861       8.803       1.220                                                                                                                                                                                                                                                                                                  |                   | 1.0441              | 10.840            | 8.696                    | 0.943                              |
| 6.3       1.0456       11.195       8.708       0.975         6.4       1.0463       11.373       8.714       0.991         6.5       1.0471       11.551       8.720       1.007         6.6       1.0478       11.728       8.726       1.023         6.7       1.0486       11.906       8.733       1.040         6.8       1.0493       12.084       8.739       1.056         6.9       1.0501       12.261       8.745       1.072         7.0       1.0508       12.439       8.751       1.089         7.1       1.0516       12.617       8.758       1.105         7.2       1.0523       12.794       8.764       1.121         7.3       1.0531       12.972       8.770       1.138         7.4       1.0539       13.150       8.777       1.154         7.5       1.0547       13.328       8.784       1.171         7.6       1.0554       13.505       8.790       1.187         7.7       1.0562       13.683       8.796       1.204         7.8       1.0570       13.861       8.803       1.220                                                                                                                                                                                                                                                                                                  | 6.2               | 1.0448              | 11.017            | 8.701                    | 0.959                              |
| 6.4       1.0463       11.373       8.714       0.991         6.5       1.0471       11.551       8.720       1.007         6.6       1.0478       11.728       8.726       1.023         6.7       1.0486       11.906       8.733       1.040         6.8       1.0493       12.084       8.739       1.056         6.9       1.0501       12.261       8.745       1.072         7.0       1.0508       12.439       8.751       1.089         7.1       1.0516       12.617       8.758       1.105         7.2       1.0523       12.794       8.764       1.121         7.3       1.0531       12.972       8.770       1.138         7.4       1.0539       13.150       8.777       1.154         7.5       1.0547       13.328       8.784       1.171         7.6       1.0554       13.505       8.790       1.187         7.7       1.0562       13.683       8.796       1.204         7.8       1.0570       13.861       8.803       1.220                                                                                                                                                                                                                                                                                                                                                                |                   | 1.0456              | 11.195            | 8.708                    | 0.975                              |
| 6.5       1.0471       11.551       8.720       1.007         6.6       1.0478       11.728       8.726       1.023         6.7       1.0486       11.906       8.733       1.040         6.8       1.0493       12.084       8.739       1.056         6.9       1.0501       12.261       8.745       1.072         7.0       1.0508       12.439       8.751       1.089         7.1       1.0516       12.617       8.758       1.105         7.2       1.0523       12.794       8.764       1.121         7.3       1.0531       12.972       8.770       1.138         7.4       1.0539       13.150       8.777       1.154         7.5       1.0547       13.328       8.784       1.171         7.6       1.0554       13.505       8.790       1.187         7.7       1.0562       13.683       8.796       1.204         7.8       1.0570       13.861       8.803       1.220                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 1.0463              | 11.373            | 8.714                    | 0.991                              |
| 6.6       1.0478       11.728       8.726       1.023         6.7       1.0486       11.906       8.733       1.040         6.8       1.0493       12.084       8.739       1.056         6.9       1.0501       12.261       8.745       1.072         7.0       1.0508       12.439       8.751       1.089         7.1       1.0516       12.617       8.758       1.105         7.2       1.0523       12.794       8.764       1.121         7.3       1.0531       12.972       8.770       1.138         7.4       1.0539       13.150       8.777       1.154         7.5       1.0547       13.328       8.784       1.171         7.6       1.0554       13.505       8.790       1.187         7.7       1.0562       13.683       8.796       1.204         7.8       1.0570       13.861       8.803       1.220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                     | 11.551            | 8.720                    | 1.007                              |
| 6.7       1.0486       11.906       8.733       1.040         6.8       1.0493       12.084       8.739       1.056         6.9       1.0501       12.261       8.745       1.072         7.0       1.0508       12.439       8.751       1.089         7.1       1.0516       12.617       8.758       1.105         7.2       1.0523       12.794       8.764       1.121         7.3       1.0531       12.972       8.770       1.138         7.4       1.0539       13.150       8.777       1.154         7.5       1.0547       13.328       8.784       1.171         7.6       1.0554       13.505       8.790       1.187         7.7       1.0562       13.683       8.796       1.204         7.8       1.0570       13.861       8.803       1.220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                     |                   | 8.726                    | 1.023                              |
| 6.9       1.0501       12.261       8.745       1.072         7.0       1.0508       12.439       8.751       1.089         7.1       1.0516       12.617       8.758       1.105         7.2       1.0523       12.794       8.764       1.121         7.3       1.0531       12.972       8.770       1.138         7.4       1.0539       13.150       8.777       1.154         7.5       1.0547       13.328       8.784       1.171         7.6       1.0554       13.505       8.790       1.187         7.7       1.0562       13.683       8.796       1.204         7.8       1.0570       13.861       8.803       1.220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | 1.0486              | 11.906            | 8.733                    | 1.040                              |
| 6.9       1.0501       12.261       8.745       1.072         7.0       1.0508       12.439       8.751       1.089         7.1       1.0516       12.617       8.758       1.105         7.2       1.0523       12.794       8.764       1.121         7.3       1.0531       12.972       8.770       1.138         7.4       1.0539       13.150       8.777       1.154         7.5       1.0547       13.328       8.784       1.171         7.6       1.0554       13.505       8.790       1.187         7.7       1.0562       13.683       8.796       1.204         7.8       1.0570       13.861       8.803       1.220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                 |                     |                   |                          |                                    |
| 7.1       1.0516:       12.617.       8.758       1.105.         7.2       1.0523       12.794.       8.764       1.121.         7.3       1.0531       12.972.       8.770       1.138.         7.4       1.0539       13.150       8.777       1.154         7.5       1.0547       13.328       8.784       1.171         7.6       1.0554       13.505       8.790       1.187         7.7       1.0562       13.683       8.796       1.204         7.8       1.0570       13.861       8.803       1.220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                     |                   | 8.745                    | 1.072                              |
| 7.1       1.0516:       12.617       8.758       1.105         7.2       1.0523       12.794       8.764       1.121         7.3       1.0531       12.972       8.770       1.138         7.4       1.0539       13.150       8.777       1.154         7.5       1.0547       13.328       8.784       1.171         7.6       1.0554       13.505       8.790       1.187         7.7       1.0562       13.683       8.796       1.204         7.8       1.0570       13.861       8.803       1.220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.0               | 1.0508              | 12.439            | 8.751                    | 1.089                              |
| 7.2       1.0523       12.794       8.764       1.121 as         7.3       1.0531       12.972       8.770       1.138 as         7.4       1.0539       13.150       8.777       1.154         7.5       1.0547       13.328       8.784       1.171         7.6       1.0554       13.505       8.790       1.187         7.7       1.0562       13.683       8.796       1.204         7.8       1.0570       13.861       8.803       1.220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                     |                   | 8.758                    |                                    |
| 7.3     1.0531     12.972     8.770     1.138       7.4     1.0539     13.150     8.777     1.154       7.5     1.0547     13.328     8.784     1.171       7.6     1.0554     13.505     8.790     1.187       7.7     1.0562     13.683     8.796     1.204       7.8     1.0570     13.861     8.803     1.220       4.227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | · •                 |                   | 8.764                    | 1.121                              |
| 7.4     1.0539     13.150     8.777     1.154       7.5     1.0547     13.328     8.784     1.171       7.6     1.0554     13.505     8.790     1.187       7.7     1.0562     13.683     8.796     1.204       7.8     1.0570     13.861     8.803     1.220       4.227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                     |                   | 8.770                    |                                    |
| 7.5       1.0547       13.328       8.784       1.171         7.6       1.0554       13.505       8.790       1.187         7.7       1.0562       13.683       8.796       1.204         7.8       1.0570       13.861       8.803       1.220         4.227       1.227       1.227       1.227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                     |                   | 8.777                    | 1.154                              |
| 7.6       1.0554       13.505       8.790       1.187         7.7       1.0562       13.683       8.796       1.204         7.8       1.0570       13.861       8.803       1.220         4.227       1.227       1.227       1.227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                     |                   |                          | 1.171                              |
| 7.7     1.0562     13.683     8.796     1.204       7.8     1.0570     13.861     8.803     1.220       4.227     1.227     1.227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                     |                   |                          | 1.187                              |
| 7.8 1.0570 13.861 8.803 1.220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                     |                   |                          | 1.204                              |
| 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                     |                   |                          | 1.220                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                     |                   | 8.809                    | 1.237                              |


| Degrees  | Specific<br>Gravity | Percent<br>Starch | Density in<br>Lb per Gal | Pounds Dry<br>Starch per<br>Gallon |
|----------|---------------------|-------------------|--------------------------|------------------------------------|
| Beaume ' | Gravity             |                   |                          |                                    |
|          | 4 0505              | 14 216            | 8.815                    | 1.253                              |
| 8.0      | 1.0585              | 14.216            | 8.822                    | 1.270                              |
| 8.1      | 1.0593              | 14.394            | 8.829                    | 1.286                              |
| 8.2      | 1.0601              | 14.571            | 8.835                    | 1.303                              |
| 8.3      | 1.0608              | 14.749<br>14.927  | 8.841                    | 1.320                              |
| 8.4      | 1.0616              | 15.105            | 8.848                    | 1.336                              |
| 8.5      | 1.0624              | 15.282            | 8.855                    | 1.353                              |
| 8.6      | 1.0632              | 15.460            | 8.861                    | 1.370                              |
| 8.7      | 1.0640              | 15.638            | 8.867                    | 1.387                              |
| 8.8      | 1.0647<br>1.0655    | 15.815            | 8.874                    | 1.403                              |
| 8.9      | 1.0055              | 13.013            |                          |                                    |
| 9.0      | 1.0663              | 15.993            | 8.880                    | 1.420                              |
| 9.1      | 1.0671              | 16.171            | 8.887                    | 1.437                              |
| 9.2      | 1.0679              | 16.348            | 8.894                    | 1.454                              |
| 9.3      | 1.0687              | 16.526            | 8.900                    | 1.471                              |
| 9.4      | 1.0695              | 16.704            | 8.907                    | 1.488                              |
| 9.5      | 1.0703              | 16.882            | 8.914                    | 1.505                              |
| 9.6      | 1.0710              | 17.059            | 8.920                    | 1.522                              |
| 9.7      | 1.0718              | 17.237            | 8.926                    | 1.539                              |
| 9.8      | 1.0726              | 17.415            | 8.933                    | 1. <u>5</u> 56                     |
| 9.9      | 1.0734              | 17.592            | 8.940                    | 1.573                              |
|          | 4 0740              | 47 770            | 8.946                    | 1.590                              |
| 10.0     | 1.0742              | 17.770            |                          | 1.607                              |
| 10.1     | 1.0750              | 17.948            | 8.953                    |                                    |
| 10.2     | 1.0758              | 18.125            | 8.960                    | 1.624<br>1.641                     |
| 10.3     | 1.0766              | 18.303            | 8.966                    |                                    |
| 10.4     | 1.0774              | 18.481            | 8.973                    | 1.658                              |
| 10.5     | 1.0782              | 18.659            | 8.979<br>8.986           | 1.675<br>1.693                     |
| 10.6     | 1.0790              | 18.836            | 8.993                    | 1.710                              |
| 10.7     | 1.0798              | 19.014<br>19.192  | 8.999                    | 1.727                              |
| 10.8     | 1.0806<br>1.0814    | 19.369            | 9.006                    | 1.744                              |
| 10.9     | 1.0014              | 15.305            | 5.000                    | 1./44                              |
| 11.0     | 1.0822              | 19.547            | 9.013                    | 1.762                              |
| 11.1     | 1.0830              | 19.725            | 9.019                    | 1.779                              |
| 11.2     | 1.0838              | 19.902            | 9.026                    | 1.796 🚟                            |
| 11.3     | 1.0846              | 20.080            | 9.033                    | 1.814                              |
| 11.4     | 1.0854              | 20.258            | 9.039                    | 1.831                              |
| 11.5     | 1.0863              | 20.436            | 9.047                    | 1.849                              |
| 11.6     | 1.0871              | 20.613            | 9.054                    | 1.866                              |
| 11.7     | 1.0879              | 20.791            | 9.060                    | 1.884                              |
| 11.8     | 1.0887              | 20.969            | 9.067                    | 1.901                              |
| 11.9     | 1.0895              | 21.146            | 9.074                    | 1.919                              |

| Degrees<br>Beaume | Specific<br>Gravity | Percent<br>Starch | Density in<br>Lb per Gal | Pounds Dry<br>Starch per<br>Gallon |
|-------------------|---------------------|-------------------|--------------------------|------------------------------------|
|                   |                     |                   |                          |                                    |
| 12.0              | 1.0903              | 21.324            | 9.080                    | 1.936                              |
| 12.1              | 1.0911              | 21.502            | 9.087                    | 1.954                              |
| 12.2              | 1.0920              | 21.679            | 9.094                    | 1.972                              |
| 12.3              | 1.0928              | 21.857            | 9.101                    | 1.989                              |
| 12.4              | 1.0936              | 22.035            | 9.108                    | 2.007                              |
| 12.5              | 1.0945              | 22.213            | 9.115                    | 2.025                              |
| 12.6              | 1.0953              | 22.390            | 9.122                    | 2.042                              |
| 12.7              | 1.0961              | 22.568            | 9.129                    | 2.060                              |
| 12.8              | 1.0969              | 22.746            | 9.135                    | 2.078                              |
| 12.9              | 1.0978              | 22.923            | 9.143                    | 2.096                              |
| 13.0              | 1.0986              | 23.101            | 9.149                    | 2.114                              |
| 13.1              | 1.0995              | 23.279            | 9.157                    | 2.132                              |
| 13.2              | 1.1003              | 23.459            | 9.164                    | 2.150                              |
| 13.3              | 1.1012              | 23.634            | 9.171                    | 2.167                              |
| 13.4              | 1.1020              | 23.812            | 9.178                    | 2.185                              |
| 13.5              | 1.1029              | 23.990            | 9.185                    | 2.203                              |
| 13.6              | 1.1037              | 24.167            | 9.192                    | 2.221                              |
| 13.7              | 1.1046              | 24.345            | 9.199                    | 2.239                              |
| 13.8              | 1.1054              | 24.523            | 9.206                    | 2.258                              |
| 13.9              | 1.1063              | 24.700            | 9.214                    | 2.276                              |
| 14.0              | 1.1071              | 24.878            | 9.220                    | 2.294                              |
| 14.1              | 1.1080              | 25.056            | 9.228                    | 2.312                              |
| 14.2              | 1.1088              | 25.233            | 9.234                    | 2.330                              |
| 14.3              | 1.1097              | 25.411            | 9.242                    | 2.348                              |
| 14.4              | 1.1105              | 25.589            | 9.248                    | 2.366                              |
| 14.5              | 1.1114              | 25.767            | 9.256                    | 2.385                              |
| 14.6              | 1.1122              | 25.944            | 9.263                    | 2.403                              |
| 14.7              | 1.1131              | 26.122            | 9.270                    | 2.422                              |
| 14.8              | 1.1139              | 26.300            | 9.277                    | 2.440                              |
| 14.9              | 1.1148              | 26.477            | 9.284                    | 2.458                              |
| 4E A              | 1.1156              | 26.655            | 9.291                    | 2.477                              |
| 15.0              | 1.1165              | 26.833 ·          | 9.298                    | 2.495                              |
| 15.1<br>15.2      | 1.1173              | 27.010            | 9.305                    | 2.513                              |
| 15.3              | 1.1173              | 27.188 ··         | 9.313                    | 2.532 ·                            |
| 15.4              | 1.1190              | 27.166            | 9.319                    | 2.550                              |
|                   | 1.1199              | 27.544            | 9.327                    | 2.569                              |
| 15.5<br>15.6      | 1.1199              | 27.721            | 9.334                    | 2.587                              |
| 15.6<br>15.7      |                     | 27.721            | 9.341                    | 2.606                              |
| 15.7              | 1.1216              | 27.899<br>28.077  | 9.348                    | 2.625                              |
| 15.8              | 1.1225              | 28.254            | 9.355                    | 2.643                              |
| 15.9              | 1.1233              | 20,234            | 9.933                    | #.VTV                              |


| Degrees<br>Beaume | Specific<br>Gravity | Percent<br>Starch | Density in<br>Lb per Gal | Pounds Dry<br>Starch per<br>Gallon |
|-------------------|---------------------|-------------------|--------------------------|------------------------------------|
|                   |                     |                   |                          |                                    |
| 16.0              | 1.1242              | 28.432            | 9.363                    | 2.662                              |
| 16.1              | 1.1251              | 28.610            | 9.370                    | 2.681                              |
| 16.2              | 1.1260              | 28.787            | 9.378                    | 2.700                              |
| 16.3              | 1.1268              | 28.965            | 9.384                    | 2.718                              |
| 16.4              | 1.1277              | 29.143            | 9.392                    | 2.737                              |
| 16.5              | 1.1286              | 29.321            | 9.399                    | 2.756                              |
| 16.6              | 1.1295              | 29.498            | 9.407                    | 2.775                              |
| 16.7              | 1.1304              | 29.675            | 9.414                    | 2.794                              |
| 16.8              | 1.1312              | 29.854            | 9.421                    | 2.813                              |
| 16.9              | 1.1321              | 30.031            | 9.428                    | 2.831                              |
| 17.0              | 1.1330              | 30.209            | 9.436                    | 2.851                              |
| 17.1              | 1.1339              | 30.387            | 9.443                    | 2.869                              |
| 17.2              | 1.1348              | 30.564            | 9.451                    | 2.889                              |
| 17.3              | 1.1357              | 30.742            | 9.458                    | 2.908                              |
| 17.4              | 1.1366              | 30.920            | 9.466                    | 2.927                              |
| 17.5              | 1.1375              | 31.098            | 9.473                    | 2.946                              |
| 17.6              | 1.1383              | 31.275            | 9.480                    | 2.965                              |
| 17.7              | 1.1392              | 31.453            | 9.488                    | 2.984                              |
| 17.8              | 1.1401              | 31.631            | 9.495                    | 3.003                              |
| 17.9              | 1.1410              | 31.808            | 9.503                    | 3.023                              |
| 18.0              | 1.1419              | 31.986            | 9.510                    | 2.042                              |
| 18.1              | 1.1428              | 32.164            | 9.518                    | 3.042                              |
| 18.2              | 1.1437              | 32.341            |                          | 3.061                              |
| 18.3              | 1.1446              | 32.519            | 9.525<br>9.532           | 3.080                              |
| 18.4              | 1.1455              | 32.697            | 9.540                    | 3.100                              |
| 18.5              | 1.1465              | 32.875            | 9.548                    | 3.119                              |
| 18.6              | 1.1474              | 33.052            | 9.556                    | 5.139<br>3.158                     |
| 18.7              | 1.1483              | 33.230            | 9.563                    | 3.178                              |
| 18.8              | 1.1492              | 33.408            | 9.571                    | 3.176<br>3.197                     |
| 18.9              | 1.1501              | 33.585            | 9.578                    | 3.197<br>3.217                     |
| 10.9              | 1.1501              | 33.365            | 9.976                    | 3.217                              |
| 19.0              | 1.1510              | 33.763            | 9.586                    | 3.237                              |
| 19.1              | 1.1519              | 33.941            | 9.593                    | 3.256                              |
| 19.2              | 1.1528              | 34.118            | 9.601                    | <b>3.276</b> <i>∶</i>              |
| 19.3              | 1.1538              | 34.296            | 9.609                    | 3.296                              |
| 19.4              | 1.1547              | 34.474            | 9.617                    | 3.315                              |
| 19.5              | 1.1556              | 34.652            | 9.624                    | <b>3.335</b> <sup>-</sup>          |
| 19.6              | 1.1565              | 34.829            | 9.632                    | 3.355                              |
| 19.7              | 1.1574              | 35.007            | 9.639                    | 3.374                              |
| 19.8              | 1.1584              | 35.185            | 9.647                    | 3.394                              |
| 19.9              | 1.1593              | 35.362            | 9.655                    | 3.414                              |

| Degrees<br>Beaume        | Specific<br>Gravity | Percent<br>Starch | Density in<br>Lb per Gal | Pounds Dry<br>Starch per<br>Gallon |
|--------------------------|---------------------|-------------------|--------------------------|------------------------------------|
| 20.0                     | 4 4000              | 05 540            | 0.000                    |                                    |
| 20.0                     | 1.1602              | 35.540            | 9.662                    | 3.434                              |
| 20.1                     | 1.1611              | 35.718            | 9.670                    | 3.454                              |
| 20.2                     | 1.1621              | 35.895            | 9.678                    | 3.474                              |
| 20.3<br>20.4             | 1.1630              | 36.073            | 9.686                    | 3.494                              |
| 20.4                     | 1.1640              | 36.251<br>36.430  | 9.694                    | 3.514                              |
| 20.6                     | 1.1649<br>1.1658    | 36.429            | 9.702                    | 3.534                              |
| 20.7                     | 1.1668              | 36.606<br>36.784  | 9.709                    | 3.554                              |
| 20.8                     | 1.1677              | 36.784<br>36.962  | 9.717                    | 3.574                              |
| 20.9                     | 1.1687              | 36.962<br>37.139  | 9.725                    | 3.595                              |
| 20.3                     | 1.1007              | 37.139            | 9.733                    | 3.615                              |
| 21.0                     | 1.1696              | 37.317            | 9.741                    | 3.635                              |
| 21.1                     | 1.1706              | 37.495            | 9.749                    | 3.655                              |
| 21.2                     | 1.1715              | 37.672            | 9.757                    | 3.676                              |
| 21.3                     | 1.1725              | 37.850            | 9.765                    | 3.696                              |
| 21.4                     | 1.1734              | 38.028            | 9.772                    | 3.716                              |
| 21.5                     | 1.1744              | 38.206            | 9.781 -                  | 3.737                              |
| 21.6                     | 1.1753              | 38.383            | 9.788-                   | 3.757                              |
| 21.7                     | 1.1763              | 38.561            | 9.796                    | 3.777                              |
| 21.8                     | 1.1772              | 38.739            | 9.804                    | 3.798                              |
| 21.9                     | 1.1782              | 38.916            | 9.812                    | 3.818                              |
| <b>22.0</b> ·            | 1.1791              | 39.094            | 9.820                    | 3.839                              |
| 22.1                     | 1.1801              | 39.272            | 9.828                    | 3.860                              |
| 22.2                     | 1.1810              | 39.449            | 9.836                    | 3.880                              |
| 22.3                     | 1.1820              | 39.627            | 9.844                    | 3.901                              |
| 22.4                     | 1.1830              | 39.805            | 9.852                    | 3.922                              |
| 22.5                     | 1.1840              | 39.983            | 9.861                    | 3.943                              |
| 22.6                     | 1.1849              | 40.160            | 9.868                    | 3.963                              |
| 22.7                     | 1.1859              | 40.338            | 9.876                    | 3.984                              |
| 22.8                     | 1.1869              | 40.516            | 9.885                    | 4.005                              |
| 22.9                     | 1.1878              | 40.693            | 9.892                    | 4.025                              |
| 23.0                     | 1.1888              | 40.871            | 9.901                    | 4.047                              |
| 23.1                     | 1.1898              | 41.049            | 9.909                    | 4.068                              |
| 23.2                     | 1.1908              | 41.226            | 9.917                    | 4.088                              |
| 23.3                     | 1.1917              | 41.404            | 9.925                    | 4.109                              |
| 23.4                     | 1.1917              | 41.582            | 9.933                    | 4.130                              |
| 23.4<br>23.5             | 1.1927              | 41.760            | 9.941                    | 4.151                              |
| 23.6                     | 1.1947              | 41.937            | 9.950                    | 4.173                              |
| 23. <del>0</del><br>23.7 | 1.1957              | 42.115            | 9.958                    | 4.194                              |
| 23.7<br>23.8             | 1.1966              | 42.119            | 9.966                    | 4.215                              |
| 23.9                     | 1.1976              | 42.470            | 9.974                    | 4.236                              |
| ۷۵.5                     | 1.1370              | 72.470            | J.J/7                    | 11200                              |

| Degrees<br>Beaume | Specific<br>Gravity | Percent<br>Starch | Density in<br>Lb per Gal | Pounds Dry<br>Starch per<br>Gallon |
|-------------------|---------------------|-------------------|--------------------------|------------------------------------|
| 24.0              | 1.1986              | 42.648            | 9.982                    | 4.057                              |
| 24.1              | 1.1996              | 42.826            | 9.991                    | 4.257                              |
| 24.2              | 1.2006              | 43.003            |                          | 4.279                              |
|                   |                     |                   | 9.999                    | 4.300                              |
| 24.3              | 1.2016              | 43.181            | 10.007                   | 4.321                              |
| 24.4              | 1.2026              | 43.359            | 10.016                   | 4.343                              |
| 24.5              | 1.2036              | 43.537            | 10.024                   | 4.364                              |
| 24.6              | 1.2046              | 43.714            | 10.032                   | 4.385                              |
| 24.7              | 1.2056              | 43.892            | 10.041                   | 4.407                              |
| 24.8              | 1.2066              | 44.070            | 10.049                   | 4.429                              |
| 24.9              | 1.2076              | 44.247            | 10.057                   | 4.450                              |
| 25.0              | 1.2086              | 44.425            | 10.065                   | 4.471                              |



.

