



LabTop 3000 Operator's Manual

# Para Tech Coating Inc.



# LabTop 3000 Operator's Manual



## Table of Contents

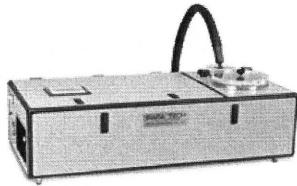
| <b>Section</b>                                                                                                     | <b>Page</b> |
|--------------------------------------------------------------------------------------------------------------------|-------------|
| System Configuration.....                                                                                          | 3           |
| System Description.....                                                                                            | 3           |
| The Coating Cycle.....                                                                                             | 4           |
| Operating Instructions.....                                                                                        | 5           |
| System Recommendations.....                                                                                        | 5           |
| System pre-coating preparations.....                                                                               | 5           |
| Equipment Overview and Materials Requirement.....                                                                  | 5           |
| Operator Panel Operation Overview.....                                                                             | 8           |
| Screen and button function definitions.....                                                                        | 8           |
| Main Screen.....                                                                                                   | 8           |
| View All Screen.....                                                                                               | 9           |
| Door and Vaporizer screen.....                                                                                     | 10          |
| Pyrolysis Screen.....                                                                                              | 11          |
| Post Pyrolysis Screen.....                                                                                         | 11          |
| Foreline Vacuum Screen.....                                                                                        | 12          |
| Program Screen.....                                                                                                | 12          |
| Trend History Screen.....                                                                                          | 14          |
| Alarm Online Screen.....                                                                                           | 14          |
| Alarm History Screen.....                                                                                          | 15          |
| Trend Screens.....                                                                                                 | 16          |
| Consolidated button functions list.....                                                                            | 19          |
| Coating Application.....                                                                                           | 20          |
| First deposition cycle.....                                                                                        | 20          |
| Last deposition cycle of the day.....                                                                              | 22          |
| Performing a Coating Run overview .....                                                                            | 24          |
| Emergency Stop Button.....                                                                                         | 25          |
| Panel Interlock Switches.....                                                                                      | 25          |
| Thermal Override Protection Safety Feature (T.O.P.).....                                                           | 31          |
| Resetting the T.O.P.....                                                                                           | 32          |
| System Preventive Maintenance Schedule.....                                                                        | 32          |
| System Calibration.....                                                                                            | 33          |
| Trend History Data Export Procedure.....                                                                           | 39          |
| PID module Tuning Procedure.....                                                                                   | 43          |
| Appendix A Coating Program Parameters.....                                                                         | 47          |
| Appendix B Parylene Deposition Troubleshooting.....                                                                | 48          |
| Appendix C System Daily Preventive Maintenance.....                                                                | 51          |
| Appendix D – Additional Important information .....                                                                | 56          |
| (Chiller probe, Substrate Fixture, System safety interlock switches, U-Linx and V-Linx ports, Vacuum pump ballast) |             |



## LabTop 3000 Operator's Manual

### System Configuration

Model: **LabTop 3000** Serial # **3105**


Chamber Size: **8" x 9"**

Electrical Requirements: **208 Volt/60Hz/3 Phase/20 Amps**

Vacuum pump: **TrivacE2**

Cold Trap: **Mechanically Refrigerated Chiller**

System fittings: **Electro-Pneumatic**



### System Description

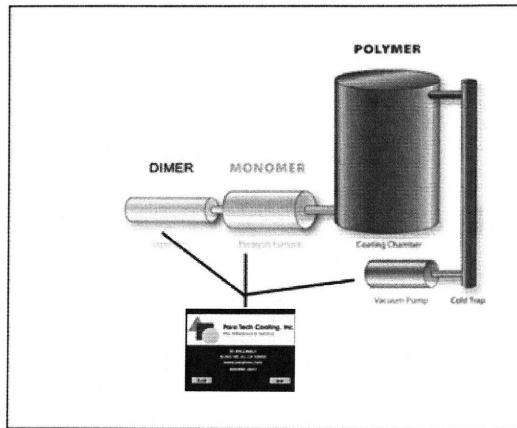
The Para Tech Coating, Inc. portable Model 3000 coating system is designed for processing small substrates or modules in both laboratory and production settings. This bench-top coating system is a scaled-down version of the full-size Para Tech production units, with equivalent automated process features and vacuum-coating precision. It is suited for coating application research and development as well as short run production coating of printed circuit boards, medical components, electronic sensors and other small substrates. Tangential entry and exiting of the polymerizing monomer results in a low coating thickness gradient and superior film uniformity. Pressure and temperature values are pre-programmed and automatically controlled, providing operators the ability to achieve precise, repeatable results.

### Key Features

- Patented tangential flow coating technology for film uniformity and production efficiency
- Baffle-free chamber design for optimal capacity and deposition efficiency
- Pre-programmed automated process computer with flat panel display

**Commented [EL1]:** How do you assure even distribution / circulation then?




## LabTop 3000 Operator's Manual

### The Coating Cycle

Para Tech Coating, Inc. uses a proprietary process for controlling temperature and pressure during Parylene coating. Control of the coating cycle is based on time and temperature, and does not depend on chamber pressure fluctuations related to the flow of monomer gas. As a result, thermal excursions and coating bursts are avoided, and cycle times are predictable and controllable.

The coating cycle begins with vaporization of the powdered raw material (dimer) at 130°C, creating a dimeric gas. Gas molecules are subsequently cleaved to the monomer form in a second stage by heating to 650°C. The active monomer gas is then introduced to an evacuated coating chamber where it disperses and polymerizes spontaneously on substrate surfaces at room temperature to form Parylene film.

The LabTop 3000 is fully microprocessor controlled. Utilizing a user-friendly touch-screen HMI display (Human Machine Interface), the LabTop 3000 comes pre-programmed to cover a wide range of Parylene coating applications. The HMI also collects critical coating-run process data that can be viewed on the HMI screen and can also be exported (in .CSV format) so that process values may be reviewed and analyzed off-line using a personal computer. Process settings can be modified if necessary by qualified PTC personnel.



The Parylene Coating Process



## LabTop 3000 Operator's Manual

### Operating Instructions

#### System Recommendations

Read and understand the information in this manual and in all accompanying system documentation before operating or maintaining the 3000 LabTop system.

All electrical connections to the 3000 Lap Top must be made by qualified and experienced personnel to ensure operational safety.

While this Deposition System incorporates appropriate safety features, it must be stressed that some components operate at elevated temperatures and pose the danger of serious burns – particularly the dimer loading door and pyrolysis furnace. Use protective gloves when working around these high-temperature components.

Keep the control panel closed whenever the system power switch is turned on. Maintenance is to be performed only by a qualified technician.

#### System Pre-Coating Preparations

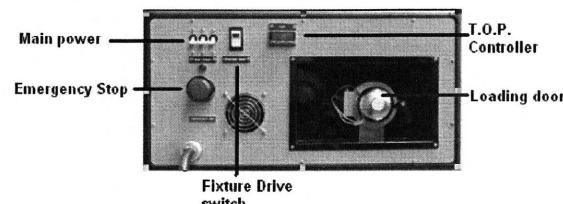
Treat the coating chamber and the coating fixtures used to hold substrates with a suitable release agent before operating the 3000 Laptop Parylene Deposition System to simplify removal of Parylene residue after the coating cycle. Para Tech does not recommend silicone-based release agents as they may contaminate substrates and compromise coating quality. Long experience shows that a light application of carnauba-based wax is an effective means of preventing Parylene adhesion to chamber surfaces. Apply the wax sparingly to all surfaces and buff with a soft cloth. Treat the chamber o-ring seal with a vacuum grease. All system o-rings are made of Viton or silicone, and can be used at elevated temperatures.

**Commented [EL2]:** Carnuba Wax instead? How about mineral oil?

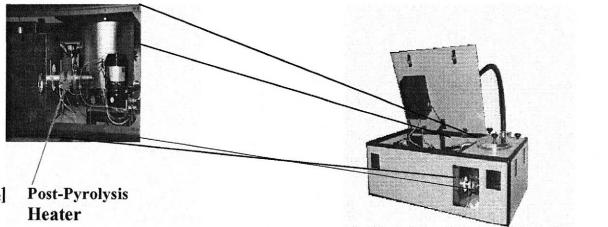
**Commented [EL3]:** Any particular spec for Vacuum grease?

#### Equipment Overview and Materials Requirement

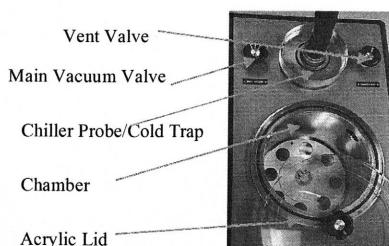
The 3000 Labtop Parylene Deposition System is composed of:


Microprocessor  
Vacuum pump  
Heated zones (Door, Vaporizer, Pyrolysis furnace, Post-Pyrolysis)  
Deposition chamber with fixture motor drive  
Cold trap  
Mechanical chiller  
Foreline vacuum gauge  
Substrate fixture




## LabTop 3000 Operator's Manual

The Main Power switch, Fixture Drive switch and Thermal Override Protection controller are visible when facing the left side of the system. Main Power sends power to the entire system, including the microprocessor, the vacuum pump and ventilation fans around the system cabinet.


The Fixture Drive switch activates the motor that maintains a constant rotation of the substrate fixture.



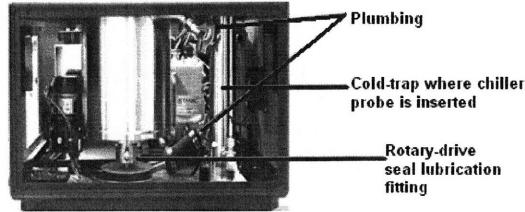
Two quick-release latches on the top of the unit allow the top panel to hinge open. System electronics, vacuum pump, heater zones, and fittings can all be accessed with the panel open. The right-side end panel opens with quick-release latches to expose cold trap, chamber, and fixture-drive rotary seal fittings for easy maintenance. The removable front panel provides access to the Post-Pyrolysis heater and thermocouples, and reveals the clamp and o-ring connection between the Pyrolysis tube and vacuum coating chamber.



The deposition chamber is covered with an acrylic lid and sealed with an o-ring. This allows for convenient viewing as substrates are coated. Adjacent to the chamber are the Cold Trap, Main Vacuum Valve, and Vent valve. The Main Vacuum Valve connects the vacuum pump to the system, and initiates system evacuation. The manual Vent Valve opens the system to atmospheric pressure to allow system venting and removal of substrates after the conclusion of a coating run.



The Cold Trap is the chamber where the mechanical chiller probe is inserted. Excess Parylene reactive monomer is condensed around the cold probe to prevent it from entering and contaminating the vacuum pump.




## LabTop 3000 Operator's Manual

**Note:** The Manual Vent valve **MUST** remain closed during a coating cycle to allow for system evacuation. During initial system warm-up and chiller cooling phase, both the Main Vacuum Valve and Vent Valve should remain closed until after dimer is placed into the vaporizer. During a coating run the valves will be in opposite positions: the Main Vacuum Valve **MUST** be opened to evacuate the system and the Vent Valve **MUST** remain closed. During system venting, at the conclusion of a coating run, the Main Vacuum Valve **MUST be closed before the Vent Valve is opened** and must remain closed during the venting process to prevent blow-back through, and damage to, the pump.

**Do not apply excessive torque to the manual valves since this can damage the internal mechanism and potentially create vacuum leaks over time".**

The right side end panel opens with quick-release latches to expose cold trap-to-chamber fittings and the rotational drive mechanism for easy maintenance.



**The primary items utilized in for the Parylene coating process are:**

- Substrate Fixture
- Fixture spacers
- Hand tools for Fixturing
- Heat-resistant gloves for handling the heated loading door on the vaporizer
- High vacuum grease for seals
- Calibrated scale for weighing Parylene raw material (powdered dimer)

**Additional recommended items include:**

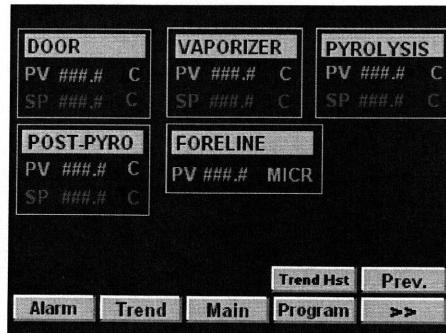
- Masking materials
- Parylene Dimer (C, N or D)
- Primer
- Witness coupons
- Coating thickness measuring equipment
- Glassware and/or stainless steel containers used for cleaning and priming/promoting

**Commented [EL4]:** How do you check the Vacuum Pump or Vent Valve? How can you tell if they are good or bad? Can you tell just by looking at them?



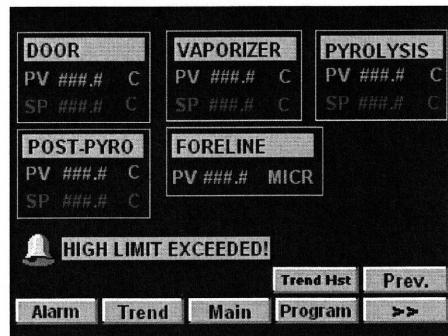
## LabTop 3000 Operator's Manual

### Operator Panel Operation Overview


#### Screen and button function definitions

\*\*\*Note – buttons appearing on multiple screens will be defined only once. A list of all button functions resides at the end of this section.



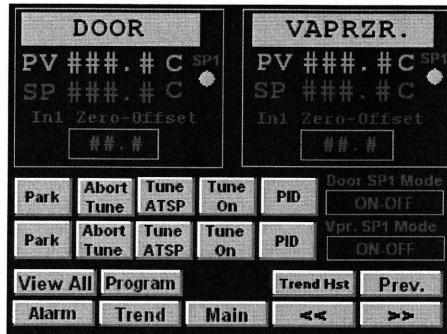

➤ **Main** application screen – visible at start-up

**>>** Takes you to the View All screen





## LabTop 3000 Operator's Manual




➤ **View All** screen – Displays the Setpoint the Process Value for all heat and vacuum zones and also displays a “High Limit Exceeded” alarm *if* the Pyrolysis furnace exceeds its upper band limit as explained in the “Thermal Override Protection” section of this manual. The “High Limit Exceeded” indication will not be displayed during normal operation (see above pictures showing the View All screen with and without the High Limit alarm indication).

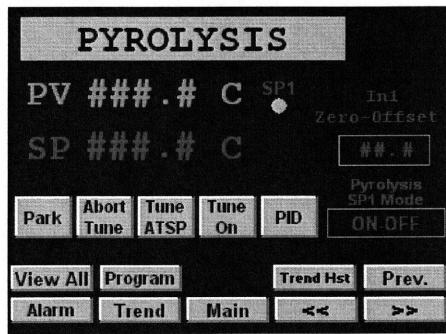
|                  |                                                                                                               |
|------------------|---------------------------------------------------------------------------------------------------------------|
| <b>Alarm</b>     | Displays the <b>Alarm</b> screen for viewing of system alarm conditions                                       |
| <b>Trend</b>     | Displays the process <b>Trend</b> screen for viewing of process parameters                                    |
| <b>Main</b>      | Calls up the <b>Main</b> application screen                                                                   |
| <b>Trend Hst</b> | Displays the Trend History screen where specific coating-run data can be exported in .csv format for charting |
| <b>Program</b>   | Displays the Program screen where programs are selected, initiated, turned off, and monitored                 |
| <b>Prev.</b>     | Displays the Previously Viewed screen                                                                         |
| <b>&gt;&gt;</b>  | Displays the next screen                                                                                      |



## LabTop 3000 Operator's Manual

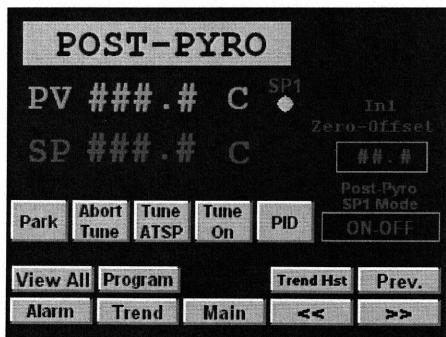


➤ **Door and Vaporizer** screen – Displays Setpoint and Process values for the Door and Vaporizer heater zones as well as their heater thermocouple calibration offset value (In1 Zero-offset), and allows for zone tuning as well.


**Commented [ELS]:** Where are these sensors (Thermocouples?) located on the equipment?

\*\*\*CAUTION – See the “Tuning” section of this manual before using the tuning feature or pressing any of the associated buttons. Tuning must be performed correctly and **ONLY WHEN NECESSARY** to avoid unnecessary down-time.

|                 |                                                                                                                                             |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Park</b>     | Parks the associated zone at Setpoint (SP) by disabling the output to the controller                                                        |
| <b>Abort</b>    | Aborts the tuning process                                                                                                                   |
| <b>Tune</b>     | Initiates the “Tune At SetPoint” (ATSP) process                                                                                             |
| <b>Tune</b>     | Initiates the tuning process from ambient temperature                                                                                       |
| <b>ATSP</b>     |                                                                                                                                             |
| <b>Tune</b>     |                                                                                                                                             |
| <b>On</b>       |                                                                                                                                             |
| <b>PID</b>      | Returns the associated zone to PID mode (Proportional, Integral, Derivative) where the zone is controlled by the system process controller. |
| <b>View All</b> | Returns to the <b>View All</b> screen where all zones can be monitored                                                                      |
| <b>&lt;&lt;</b> | Returns to the previous screen                                                                                                              |




## LabTop 3000 Operator's Manual

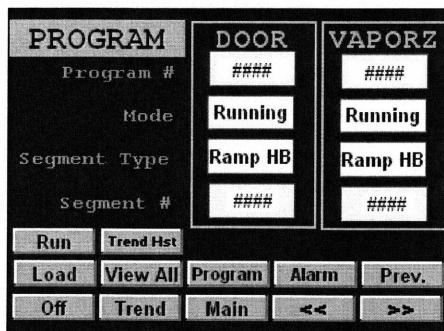


- **Pyrolysis** screen – Displays Setpoint and Process values for the pyrolysis furnace zone as well as the heater thermocouple calibration offset value (In1 Zero-offset), and allows for zone tuning as well.

\*\*\*CAUTION – See the “Tuning” section of this manual before using the tuning feature or pressing any of the associated buttons. Tuning must be performed correctly and ONLY WHEN NECESSARY to avoid unnecessary down-time.



- **Post-Pyro** screen – Displays Setpoint and Process values for the post-pyrolysis heater zone as well as the heater thermocouple calibration offset value (In1 Zero-offset), and allows for zone tuning as well.


\*\*\*CAUTION – See the “Tuning” section of this manual before using the tuning feature or pressing any of the associated buttons. Tuning must be performed correctly and ONLY WHEN NECESSARY to avoid unnecessary down-time.



## LabTop 3000 Operator's Manual



➤ **Foreline** screen – Displays the Process value for the Foreline vacuum zone as well as the Foreline vacuum calibration offset value (In1 Zero-offset) and the vacuum Alarm Setpoint (SP2).



➤ **Program screen** – the desired coating program is selected, loaded, and initiated. The program mode, segment type, and segment # can be viewed at anytime during the process.

**Run** Starts the selected coating program  
**Load** Loads the selected coating program  
**Off** Stops the coating program

**Program #** Displays the selected program



## LabTop 3000 Operator's Manual

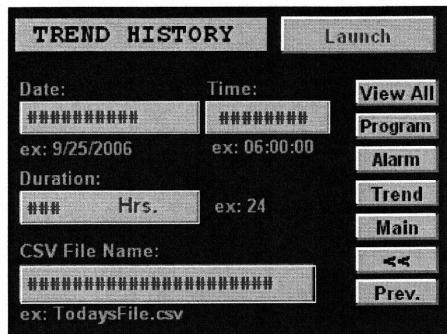
### Mode

Mode will display **Off**, **Running**, **Hold**, **Stop**, or **Holdback**.

|                 |                                                                                                                                                                                                                                                                                                           |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Off</b>      | Off button pushed or alarm condition exists                                                                                                                                                                                                                                                               |
| <b>Running</b>  | Program is running. Run button pushed, no active alarms                                                                                                                                                                                                                                                   |
| <b>Hold</b>     | If a power failure occurs and the program is configured to go into Hold mode                                                                                                                                                                                                                              |
| <b>Stop</b>     | Displayed when the selected program has completed. The Stop button should be pressed once a program has completed and <b>must</b> be pressed before the next program can be started.                                                                                                                      |
| <b>Holdback</b> | Will hold back the moving Setpoint of the Door and/or Vaporizer during temperature ramping if the Process Value (PV) exceeds the holdback band (+ 6°C) set within the program. Once the process value falls back within the specified band the moving Setpoint will resume ramping at the specified rate. |

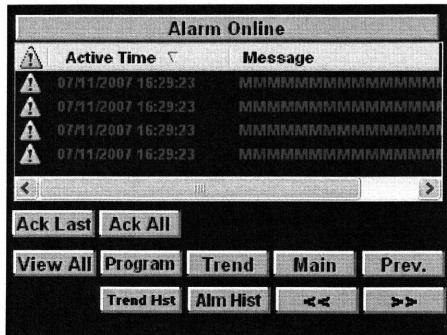
### Segment Type

Displays the current segment type as **Off**, **Ramp**, **Ramp HB**, or **Soak**


|                |                                                                                                                                                                                                                                                                                                                               |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Off</b>     | Off button pushed or alarm condition exists                                                                                                                                                                                                                                                                                   |
| <b>Soak</b>    | Indicates a Soak (segment) at a specific temperature                                                                                                                                                                                                                                                                          |
| <b>Ramp HB</b> | Indicates that a Ramp segment is in process and that the system's HoldBack feature is enabled (see Holdback under mode settings above).<br>***Note - The <b>system</b> is in HoldBack mode <b>only</b> when the program mode field displays "Holdback", otherwise Ramp HB indicates a normal ramp sequence (mode is Running). |

### Segment #

Displays the current program segment number




## LabTop 3000 Operator's Manual

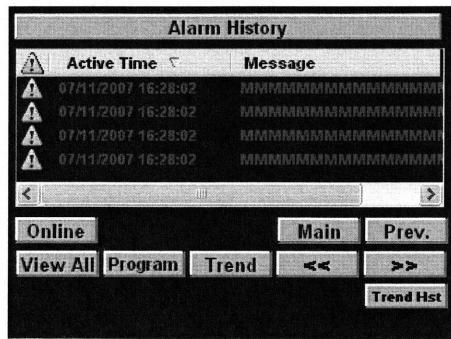


➤ **Trend History** screen – this screen allows previous coating-run process data to be exported in .csv format so that it can be charted and analyzed. (See the **Trend History Data Export Procedure** section of this manual). All data must be entered in the exact format as indicated below each field.

**Launch** Pressing this button after entering the correct data in the **Date**, **Time**, **Duration**, and **CSV File Name** fields saves the file for exporting and charting.



➤ **Alarm Online** screen – “Active” System Alarms can be viewed and acknowledged. The zone header will be flashing red on any zone that’s experiencing an alarm condition. Zone headers display a gray background under normal conditions.

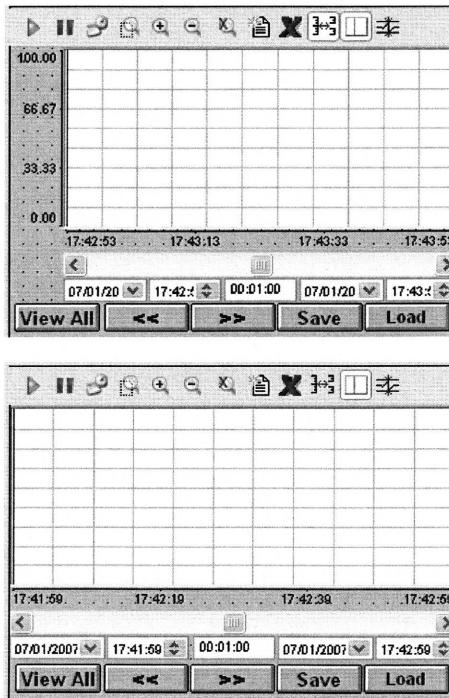

**Alm Hist** Causes the **Alarm History** page to be displayed  
**Ack Last** Acknowledges the most recent/last alarm message  
**Ack All** Acknowledges all active alarm messages



## LabTop 3000 Operator's Manual

### Alarm Status indications:

- Active alarms will be displayed in Red text
- Acknowledged alarms will be displayed in Green text
- Normalized (condition no longer exists) and Unacknowledged alarms are displayed in Blue text




➤ **Alarm History** screen – displays historic alarm messages from the history database file. The Alarm History is automatically purged after 2 days.

**Online** Causes the **Alarm Online** screen to be displayed



## LabTop 3000 Operator's Manual



➤ **Trend** screens – display active trending information of coating run in-progress.

Two trend screens are used to provide adequate display of all five zones (Door, Vaporizer, Pyrolysis, Post-Pyro, and Foreline). Toggle between the two screens using **<<** and **>>**. One screen displays Door and Vaporizer and the other displays Pyro, Post-Pyro, and Foreline.



**Save** Saves the current settings of the Trend Object

**Load** Loads the saved settings and applies them to the Trend Object during run-time

**Toolbar:** The commands available in the embedded Toolbar are described in the following table.



## LabTop 3000 Operator's Manual

\*\*\*Note **Not all buttons will apply to every display.**  
Reference **on-screen** buttons for your particular display (see table below)

| Command           | Icon | Description                                                                                                                                                                                                                                                                | Activation Tag                                                                  |
|-------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Run               | ▶    | Set the Trend to the <i>Play</i> Mode. In this mode, the X axis is continuously updated ( <i>Online</i> Mode). This option is disabled (grayed out) when the trend is already in <i>Play</i> Mode.                                                                         | 0 = Play Mode on<br>1 = Play Mode off                                           |
| Stop              | ■    | Set the Trend to the <i>Stop</i> Mode. In this mode, the X axis is not continuously updated ( <i>History</i> Mode), so the user can visualize history data in a frozen period of time. This option is disabled (grayed out) when the trend is already in <i>Stop</i> Mode. | 0 = Stop Mode on<br>1 = Stop Mode off                                           |
| Period            | ⌚    | Launches an embedded dialog, where the user can modify the X axis scale main settings                                                                                                                                                                                      | When the Activation Tag changes value (e.g. toggles), this command is executed. |
| Window Zoom       | 🔍    | Allows the user to click on the Trend area and drag the cursor to select the area that must be visible when the cursor is released. This option is disabled (grayed out) when the <b>Multiple Section</b> option (for the Y scale) is active.                              |                                                                                 |
| Horizontal Zoom   | 🕒    | Allows the user to click on two points on the Trend area, defining the Horizontal scale that must be available                                                                                                                                                             |                                                                                 |
| Vertical Zoom     | 🕒    | Allows the user to click on two points on the Trend area, defining the Vertical scale that must be available. This option is disabled (grayed out) when the <b>Multiple Section</b> option (for the Y scale) is active.                                                    |                                                                                 |
| Zoom In           | 🔍    | Allows the user to zoom in (display half of the current X and Y scales) each time they click on the Trend area.                                                                                                                                                            | 0 = Zoom In on<br>1 = Zoom In off                                               |
| Zoom Out          | 🔍    | Allows the user to zoom out each time they click on the Trend area.                                                                                                                                                                                                        | 0 = Zoom Out on<br>1 = Zoom Out off                                             |
| Cancel Zoom       | ☒    | Cancel the <i>Zoom In</i> or <i>Zoom Out</i> mode                                                                                                                                                                                                                          | When the Activation Tag changes value (e.g. toggles), this command is executed. |
| Legend Properties | ☰    | Launches an embedded dialog, where the user can modify the Legend main settings                                                                                                                                                                                            |                                                                                 |
| Pen Style         | ✍    | Launches an embedded dialog, where the user can modify the style of the selected pen.                                                                                                                                                                                      |                                                                                 |



## LabTop 3000 Operator's Manual

|                   |  |                                                                                                                                 |                                                                                 |
|-------------------|--|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Add Pen           |  | Launches a dialog, where the user can add a new pen to the Trend object                                                         |                                                                                 |
| Remove Pen        |  | Removes the selected pen from the Trend object                                                                                  |                                                                                 |
| Multiple Sections |  | Switches the Y scale to Multiple Sections (a section for each pen) or Single Section (all pens share the same Y scale section). | 0 = Multiple Sections on<br>1 = Multiple Sections off                           |
| Cursor            |  | Turns the cursor (ruler) to visible or hidden                                                                                   | 0 = Cursor on<br>1 = Cursor off                                                 |
| Auto Scale        |  | Changes the Y axis scale to fit all values from the pens that are currently being monitored.                                    | When the Activation Tag changes value (e.g. toggles), this command is executed. |

◆ **Legend:** The commands available in the embedded Legend are described in the following table:

| Command   | Icon | Description                                                                                                                                                                                                                    |
|-----------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Selection |      | Launches a dialog, where the user can replace the data point associated with the selected pen on the legend                                                                                                                    |
| Remove    |      | Removes the selected pen from the Trend object                                                                                                                                                                                 |
| Hide      |      | When checked, the selected pen is visible; otherwise, it is hidden.                                                                                                                                                            |
| Pen Style |      | Launches an embedded dialog, where the user can modify the style of the selected pen.                                                                                                                                          |
| Scale     |      | When this box is checked, the Y axis scale is visible; otherwise, it is hidden. The scale can be hidden only when each pen is using an individual scale (not sharing the same scale), and the Multiple Sections option is off. |

□ **Scroll bar:** Using the Scroll bar, the user can slide through the X axis values, according to the period configured for this scale.

□ **Time bar:** Using the Time bar, the user can modify the Duration, as well as the Start Date/Time and/or the End Date/Time, for the data displayed on the object. Changing these values will affect the tags associated with the X axis scale (if any).

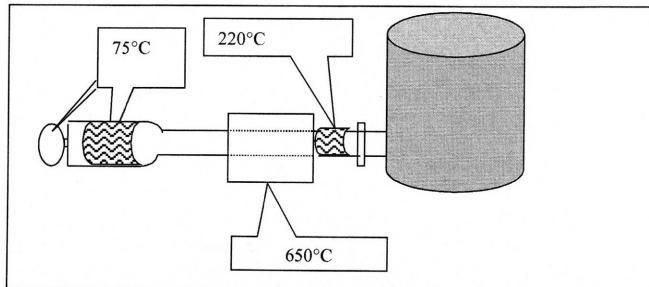


**Consolidated button functions list:**

|  |                                                                                                                                                                                      |
|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | Takes you to the next screen                                                                                                                                                         |
|  | Exits the application from the <b>Main</b> screen                                                                                                                                    |
|  | Displays the <b>Alarm</b> screen for viewing of system alarm conditions                                                                                                              |
|  | Displays the process <b>Trend</b> screen for viewing of process parameters                                                                                                           |
|  | Calls up the <b>Main</b> application screen                                                                                                                                          |
|  | Displays the Trend History screen where specific coating-run data can be exported in .csv format for charting                                                                        |
|  | Displays the Program screen where programs are selected, initiated, turned off, and monitored                                                                                        |
|  | Displays the Previously Viewed screen                                                                                                                                                |
|  | Displays the previous screen in the screen sequence                                                                                                                                  |
|  | Parks the associated zone at Setpoint (SP)                                                                                                                                           |
|  | Aborts the tuning process                                                                                                                                                            |
|  | Initiates the "Tune At SetPoint" (ATSP) process                                                                                                                                      |
|  | Initiates the tuning process from ambient temperature                                                                                                                                |
|  | Returns the associated zone to PID mode (Proportional, Integral, Derivative) where the zone is controlled by the system process controller.                                          |
|  | Returns to the <b>View All</b> screen where all zones can be monitored                                                                                                               |
|  | Starts the selected coating program                                                                                                                                                  |
|  | Loads the selected coating program                                                                                                                                                   |
|  | Stops the coating program                                                                                                                                                            |
|  | Pressing this button after entering the correct data in the <b>Date</b> , <b>Time</b> , <b>Duration</b> , and <b>CSV File Name</b> fields saves the file for exporting and charting. |
|  | Causes the <b>Alarm History</b> page to be displayed                                                                                                                                 |
|  | Acknowledges the most recent/last alarm message                                                                                                                                      |
|  | Acknowledges all active alarm messages                                                                                                                                               |
|  | Saves the current settings of the Trend Object                                                                                                                                       |
|  | Loads the saved settings and applies them to the Trend Object during run-time                                                                                                        |
|  | Indicates that a pyrolysis furnace over-temperature condition has occurred.                                                                                                          |



## LabTop 3000 Operator's Manual


### Coating Application

(After reading and thoroughly understanding this section, see the "Performing a coating run overview" section of this manual for an overview showing actual screen-shots and controls)

#### First deposition cycle

- a. Ensure the system is in a clean condition
- b. Confirm that a clean quartz liner tube has been inserted into the Pyrolysis tube
- c. Check that the Main Vacuum Valve is closed
- d. Check that the Vent Valve is closed
- e. Turn on the Main Power Switch, wait approximately 10 seconds, turn on the HMI switch
- f. The Set-Point (SP) and Process Value (PV) for each zone will be displayed and the SP values will move toward the PV values as the system heaters and vacuum pump are now operating
- g. Turn on the mechanical chiller (target chiller temperature is -60°C to -70°C) and insert the chiller probe into the cold-trap. **USE EXTREME CARE WHEN HANDLING THE CHILLER PROBE FLEX LINE, ESPECIALLY WHEN COLD AS IT IS VERY FRAGILE.**
- h. While the vacuum pump warms up, check the internal chamber surfaces for cleanliness, the chamber o-ring, o-ring groove, and the loading door o-ring. All surfaces should be clean and the o-rings should be in good condition and lightly greased with vacuum grease.
- i. Turn on the fixture drive switch and confirm that the drive shaft at the bottom of the chamber is rotating in the counterclockwise direction.

**Commented [EL6]:** Is this the long tube that has to be cleaned and replaced every few runs?



- j. Approximately 30-40 minutes after activation, the system will reach default settings in the following five zones:
  - i. Door default temperature: 75°C
  - ii. Vaporizer default temperature: 75°C
  - iii. Pyrolysis furnace default temperature: 650°C
  - iv. Post pyro default temperature: 220°C
  - v. Foreline vacuum level: 5-10 μin Hg (depending on pump condition)

**Commented [EL7]:** Is Foreline sensor attached to vacuum pump? What is meant by Foreline?

Does the Foreline sensor measure Coating Thickness or Pressure?

How do you clean it? Does it get coated with each cycle?




## LabTop 3000 Operator's Manual

- k. Prepare the raw material, load it into the vaporizer in an aluminum boat, and close the loading door, ensuring that the door o-ring is securely place in the groove
- l. Prepare the loaded substrate fixture by loading the witness coupons and by protecting the bottom 3 inches with a layer of aluminum foil wrapped around the fixture plates as a barrier to protect the parts from overexposure to the dimer entering the chamber (see picture on page 55)
- m. Insert the loaded fixture and make sure that it locks to the drive shaft at the bottom of the chamber
- n. Install the o-ring into its chamber groove and seal the chamber with the lid
- o. Insert the mechanical chiller cold probe into the cold trap chamber, making sure the o-ring is properly set around the probe, and that the probe's acrylic adaptor is perfectly flat against the cold trap o-ring
- p. Prepare to evacuate the system by holding the cold-probe down against the cold trap O-ring
- q. Slowly open the Main Vacuum Valve by turning its knob counterclockwise
- r. Allow sufficient time for the vacuum level to reach the targeted value
- s. Review the system condition by monitoring the View All screen on the HMI

**NOTE:** All set points (SP) must be reached before the operator can begin the coating deposition process

- t. Open the Program page in preparation to initiate the coating process
- u. On the Program page select the program desired by entering the number and pressing the Enter button on the keypad – Both zones must run the same program.

**NOTE:** Sixteen programs have been preset in the systems memory. Their parameters are outlined in Appendix A (Program number; duration of each program; quantity of segments in each program).





## LabTop 3000 Operator's Manual

- v. The program # will be displayed once it has been selected on the keypad.
- w. Activate the coating program by pressing Load and then Run. If no alarm condition is present at this time, the program will start. Review the trouble-shooting guide in Appendix B if the program cannot be started.
- x. Check the data logging on the Trend screen as desired – see the Trend History Data Export Procedure section of this manual for charting of the data once the run has completed.
- y. Allow the system to run for the programmed time and monitor its condition periodically. If an alarm condition presents itself during the coating cycle, the program will be automatically terminated. In this event, the operator must close the Main Vacuum Valve, open the Vent Valve, wait for the system to ventilate, and pull the fixture, check the condition of the substrates, check the raw material in the vaporizer zone, and make a disposition. If the coating cycle has not been completed, the operator may possibly reload the system with the remaining raw material and reactivate the program by following the steps above.
- z. After the program cycle has been completed, the mode will display OFF.
  - aa. Close the Main Vacuum Valve all the way. Do not apply excessive torque since this can damage the internal mechanism and potentially create vacuum leaks over time.
  - bb. Open the Vent Valve to ventilate the system, pull the chiller probe out of the cold trap, place it aside, and close the Vent Valve once again
  - cc. Open the loading door and with proper heat protection, remove the aluminum boat from the vaporizer zone
  - dd. Turn off the fixture drive, open the chamber acrylic lid, remove the substrate fixture and place it on the workstation for evaluation
  - ee. Clean the chiller probe in preparation for subsequent cycles
  - ff. Leave the system on if another cycle is to be immediately loaded

| PROGRAM      | DOOR    | VAPORZ  |
|--------------|---------|---------|
| Program #    | ####    | ####    |
| Mode         | Running | Running |
| Segment Type | Ramp HB | Ramp HB |
| Segment #    | ####    | ####    |

Program Screen

### Last deposition cycle of the day:

- a. Ensure the system is in clean condition
- b. Ensure that a clean quartz liner tube has been inserted into the Pyrolysis tube
- c. Check that the Main Vacuum Valve is closed
- d. Check that the Vent Valve is closed
- e. Check that the mechanical chiller probe is cold
- f. Check the chamber internal surfaces for cleanliness and ensure that all o-rings are clean and properly greased
- g. Check that the system is holding the default setting for all heated zones
- h. Prepare the raw material, load it into the vaporizer in an aluminum boat and close the loading door, ensuring that the door o-ring is securely place in the groove
- i. Prepare the loaded substrate fixture by loading the witness coupons and by protecting the bottom 3-inches with a layer of aluminum foil wrapped around the fixture plates



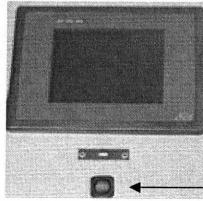
## LabTop 3000 Operator's Manual

- j. Insert the loaded fixture and make sure it locks in with the drive shaft at the bottom of the chamber
- k. Install the o-ring into its chamber groove and seal the chamber with the lid
- l. Insert the mechanical chiller cold probe into the cold trap chamber, making sure the o-ring is properly set around the probe, and that the probe's acrylic adaptor is perfectly flat against the cold trap o-ring
- m. Prepare to evacuate the system by holding down the cold probe against the cold-trap O-ring
- n. Slowly open the Main Vacuum Valve by turning its knob counterclockwise
- o. Allow sufficient time for the vacuum level to reach the required level before activating the coating program.
- p. Review the system condition by checking the operator panel View All screen
- q. Open the Program screen in preparation to initiate the coating process
- r. On the Program page select the program desired by entering the program number in both zones.
- s. Activate the coating program by pressing Load and then Run. If no alarm condition is present, the program will start. Review the trouble-shooting guide on Appendix B if the program cannot be started.
- t. Allow the system to run for the programmed time and monitor its condition periodically
- u. After the program has been completed, the mode will display OFF. At this time the operator should press OFF on the Program Screen. OFF must be pressed after a program has been run in order for the next program to be able to be loaded.
- v. Close the Main Vacuum Valve all the way. Do not apply excessive torque since this can damage the internal mechanism and potentially create vacuum leaks over time.
- w. Open the Vent Valve to ventilate the system, and then close the Vent Valve
- x. Open the loading door, and with proper heat protection remove the aluminum boat from the vaporizer zone
- y. Turn off the fixture drive, open the chamber acrylic lid, remove the substrate fixture and place it on the workstation for evaluation
- z. Allow sufficient time before the end of the work shift to activate the system for cleaning of the quartz tube liners before the system is powered down and cooled to room temperature
- aa. Check that the chiller probe is still cold and close the chamber with the acrylic lid and o-ring
- bb. Ensure the chiller probe is inserted into the cold trap and that the Vent Valve is closed
- cc. Using protective gloves and tube tongs, pull the quartz liner inside the Pyrolysis tube out toward the loading door
- dd. Close the loading door and lock it in place
- ee. Immediately hold down the chiller probe aligned with the cold trap o-ring, and open the Main Vacuum Valve
- ff. Allow a period of 15-20 minutes for the quartz line tube to be cleaned by heat from the Pyrolysis furnace
- gg. NOTE: Residue accumulated inside the quartz liner during coating cycles will be burned off, the vapors drawn to the cold trap by the vacuum pump and condensed at the cold trap. When the cleaning period is complete, close the Main Vacuum Valve and open the Vent Valve to ventilate the system
- hh. Turn off the mechanical chiller and the Main Power switches



## LabTop 3000 Operator's Manual

- ii. Pull the chiller probe out of the cold trap
- jj. Clean the cold probe under running warm water, remove all collected residue, dry the probe with paper towels, apply a light layer of wax, and set it aside for the next day
- kk. The internal surfaces of the quartz tube should be cleaned with paper towels and/or lint free cloths


**See "Coating Run overview" section below for more general information on performing coating runs**

### **Performing a coating run overview**

Before operating this machine ensure that you have read and understand all pertinent information contained in the "3000 LabTop Operator Manual".

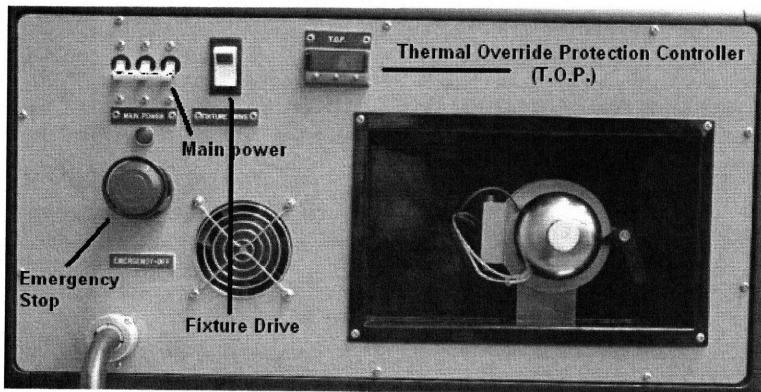
#### **Apply power to the machine in the following manner:**

- 1) Turn on the Main Power switch
- 2) Wait 10 seconds
- 3) Turn on the HMI via the HMI Switch



**NOTE** - When power is applied to this machine via the Main Power switch, all zone heaters will automatically heat up to set-point (SP) temperatures (**reference page 2 for SP temperatures**) and the vacuum pump will be powered on as well.

**NOTE** - If electrical power is interrupted during a coating cycle and is later restored, the machine will park all zones at SP (the program will terminate). Allow adequate time for the unit to cool down to SP before attempting to perform another coating run as the controller will not allow a program to begin until all zones have returned to SP temperatures.


**NOTE** - After a coating cycle program has ended, the machine will park all zones at SP. Allow adequate time for this to occur before loading dimer for the next run. Loading dimer at temperatures above SP can cause it to sublimate prematurely and will also cause higher than normal foreline vacuum readings due to the introduction of vapor into the system.

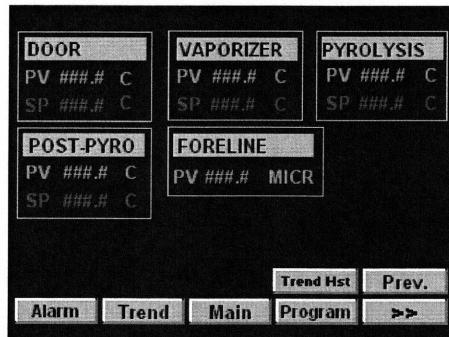


## LabTop 3000 Operator's Manual

**Emergency Stop Function (E-Stop)** – This machine is equipped with a red-mushroom type Emergency Stop button. When pushed in it will cut power to all system components, however, there are still live circuits connected to line voltage at the power input. To remove power from the machine completely, unplug it from the power source.

**Panel interlock switches** – are located on the top, front, and end panels. The machine is designed to be operated with all panels in place. When removed the interlock switches will cut-off system power. They can be bypassed for system maintenance by pulling them out to their extended position. **The panels must remain in place for the machine to operate properly.** (see appendix D for switch locations)




NOTE: Ensure that the "Emergency Stop Button" is pulled all the way out. The system unit will not power on unless it is.



## LabTop 3000 Operator's Manual

### Set-point temperatures are as follows:

Door: 75°C    Vaporizer: 75°C    Pyrolysis (oven): 650°C    Post-Pyro: 220°C



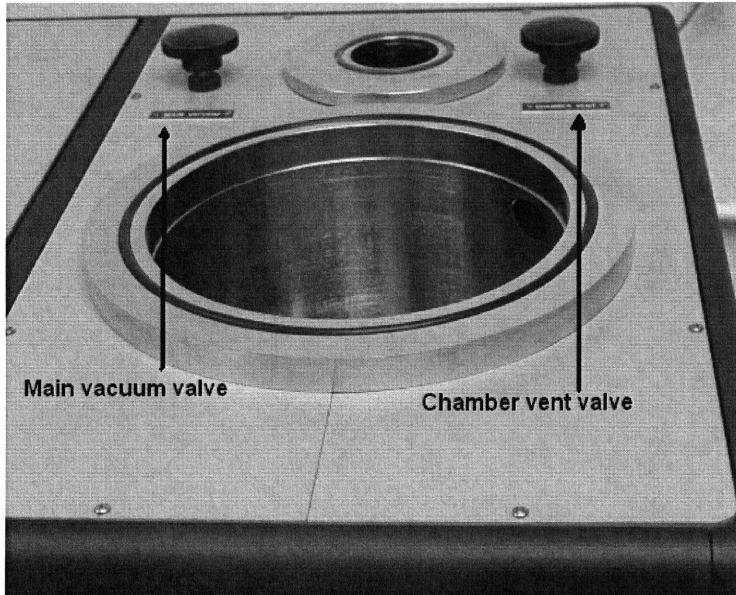
**Foreline vacuum reading** - with the Main Vacuum valve closed will read approximately 4 microns and may rise as the vacuum pump ages.

**NOTE:** An alarm condition will occur if temperature zones exceed SP by +/- 5°C. If an alarm condition occurs, the system will terminate the current "in-process" program and all zones will return to SP. An alarm condition is displayed as a flashing red title bar in the offending zone. Alarms can be viewed by selecting the "Alarm" button, and can be reset by acknowledging them via the "Ack Last" and/or "Ack All" buttons on the "Alarm" page. See "Alarm Screen" section of this manual for more detailed information.

A Foreline alarm condition will occur when the Foreline reading is above 20 microns.

**Commented [EL8]:** Is this unit in Microns? Or in mmHg?

All zone screens can be accessed individually by touching the corresponding zone on the "View All" screen.


### Performing a coating run

**NOTE:** Reference more in depth instructions in the 3000 LabTop Operator Manual :

- 1) Ensure that both the manually operated "Main Vacuum" valve and "Chamber Vent" valves are closed. Closed = Turned FULLY to the right.



## LabTop 3000 Operator's Manual



**"Do not apply excessive torque to the manual valves since this can damage the internal mechanism and potentially create vacuum leaks over time".**

- 2) Apply power to the machine via the "Main Power" switch, wait approximately 10 seconds, turn on the HMI switch and allow all zones to reach SP temperatures.
- 3) Turn on the mechanical chiller, insert the chiller probe into the cold-trap, and allow it to run while the temperature zones reach SP. Ensure that a good seal is obtained where the chiller probe is inserted into the cold trap.

**USE EXTREME CARE WHEN HANDLING THE CHILLER PROBE FLEX LINE,  
ESPECIALLY WHEN COLD AS IT IS VERY FRAGILE.**

- 4) The HMI controller will power up and the main screen will be displayed:



## LabTop 3000 Operator's Manual



- 5) Select the “>>” button to view the “View All” page and monitor all zones as they heat up to SP. (On consecutive coating runs, all zones will show an alarm condition (FLASHING RED zone label until they are back within their alarm band. This is normal and will prevent a coating run from being started until all zones back within the required range).



- 6) At this time measure the required amount of dimer into an aluminum-foil boat, prepare the test-coupons, and fixture the substrates to be coated. (\*\*See the “Coating Program specifics and Test Run reference data” section of this manual for reference data concerning test runs performed on this machine). Protect the bottom 3 inches of the fixture with aluminum foil.
- 7) Once completed place the fixture into the chamber and close the chamber lid. Ensure that the fixture properly engages the drive shaft at the bottom of the chamber. Turn on the Fixture Drive and ensure that the fixture rotates freely and without interference.



## LabTop 3000 Operator's Manual

- 8) Once all temperatures and vacuum have stabilized at SP, load the dimer into the vaporizer and close the vaporizer door taking proper precautions to avoid improperly handling a "HOT" door.
- 9) Open the "Main Vacuum" valve and allow sufficient time for the Foreline vacuum reading to come back to within its alarm band (below 20 microns). The program will be prevented from starting until the reading is within the alarm band. Make certain that the Vent Valve is fully closed.
- 10) Once all zones are at SP (within their respective alarm bands) select "**Program**" from any page displaying the "**Program**" button and the "**Program**" screen will be displayed.

**Commented [EL9]:** How does Vacuum relate to Microns?



- 11) Enter the "**Program #**" in both the Door and Vaporizer "**Program #**" fields by touching each field and utilizing the on-screen keyboard that pops up. Select the desired program (there are 16 available).
- 12) Once the correct program #'s have been loaded into both fields, select "**Load**". The selected program # will be displayed. **The program #'s for both the Door and the Vaporizer (VAPORZ) MUST be identical.**

\*\*\*NOTE – When running programs consecutively, the "Off" button must be pressed between coating runs in order to "Load" the program for the next run.
- 13) Select "**Run**" to initiate the coating cycle. Mode, Segment Type, and Segment # information will be displayed (see more detailed information in the "Screen and button function definitions" section of this manual)
- 14) Once the coating cycle has ended the machine will park all temperatures back at SP. It may take some time for the Door and Vaporizer temperatures to return to SP.



## LabTop 3000 Operator's Manual

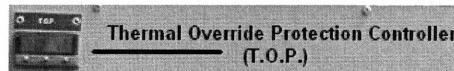
**NOTE: DO NOT load dimer for another run until all zones have returned to SP.**

15) In order to open the chamber and remove the fixture **“FIRST CLOSE THE MAIN VACUUM VALVE FULLY”** and then open the “Chamber Vent” valve slowly to vent the system. The chamber lid can now be opened and the substrates removed.

**CAUTION: Failure to “FIRST CLOSE THE MAIN VACUUM VALVE FULLY” before opening the “Chamber Vent” valve can cause serious damage to the vacuum pump.**

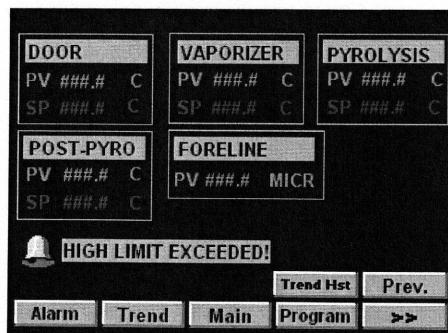
16) NOTE – before another run can be initiated the operator must go to the “Program” screen and select “OFF”.

17) Follow all instructions in the **3000 LabTop Operator Manual** for additional information on performing consecutive coating cycles (see item 5, page 28)


**NOTE: See the “Trend History Data Export Procedure” section of this manual for information on exporting and charting coating run parameters.**



## Thermal Override Protection (T.O.P) Safety Feature


The LabTop is equipped with an Industry Standard *independent* Thermal Override Protection feature designed to ensure personnel and equipment safety in the event of a Pyrolysis Furnace over-temperature condition.

A separate pyrolysis controller temperature readout is located on the end panel containing the Main Power switch. It's temperature indication will closely match the Pyrolysis temperature displayed on the HMI. The temperature displayed during normal operation may not be exactly the same as the Pyrolysis temperature displayed on the HMI since it's a completely independent circuit, but it will be reasonably close.



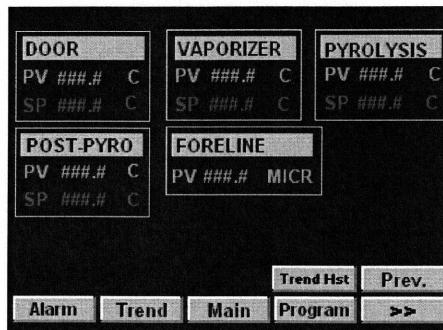
In the event that the pyrolysis furnace temperature exceeds the factory-set high-limit (700°C), the power to the pyrolysis furnace will be shut off, the coating program will halt, and the

**HIGH LIMIT EXCEEDED!** alarm will be displayed on the View All screen.



In the unlikely event that this does occur, the following steps should be taken as soon as possible:

- Close the Main Vacuum Valve
- Open the Vent Valve
- Wait for the system to ventilate
- Remove fixture from the chamber
- Check the condition of the substrates and the raw material in the vaporizer zone, and make a disposition.
- If the coating cycle has not been completed, the operator may possibly reload the system with the remaining raw material and reactivate the program by following the appropriate steps.




## LabTop 3000 Operator's Manual

### Resetting the Thermal Override Protection "High Limit" Alarm

To reset the system and turn off the  **HIGH LIMIT EXCEEDED!** alarm indication, go to the Alarm screen, Acknowledge the alarm, and then cycle the machine's "Main Power" switch to OFF and the back to ON.

Once the condition has been cleared and the system power has been reset, the High Limit warning will disappear from the View All screen.



### System Preventive Maintenance Schedule

Performance of the Parylene deposition system is highly dependent on preventive maintenance. This maintenance program includes four categories:

|               |                                                                                   |
|---------------|-----------------------------------------------------------------------------------|
| Daily         | Partial maintenance after each coating cycle, with minor disassembly and cleaning |
| Weekly        | Monitoring of vacuum pump and pump oil, replace oil after 200 hours running time  |
| Monthly       | Periodic inspection and maintenance of the vacuum sensor                          |
| Quarterly     | Periodic calibration checks and maintenance of electronic components              |
| Semi-Annually | Periodic check and maintenance of mechanical components                           |

Document completion of these maintenance steps regularly using the five worksheets provided in Appendix C of this manual

**Commented [EL10]:** Is there a recommended way to clean up /remove the coating buildup (aside from pre-treating with Carnuba)?



## LabTop 3000 Operator's Manual

### System Calibration

Instruments and measuring devices used in the Parylene coating operation shall be subject to calibration by an approved calibration laboratory according to National Institute of Standards and Technology (NIST) specifications, per MIL-STD-45663. The instruments and measuring devices shall be submitted for calibration on a quarterly schedule. Calibration labels showing the date of last calibration and expiration date are to be attached to instruments and measuring devices in use.

Instruments recommended for calibration inspections include a Teledyne calibrated gauge tube and a temperature simulator for thermocouples, type K. Recommended calibration intervals have been established as follows:

|                                                 |         |
|-------------------------------------------------|---------|
| Temperature measuring devices & indicators..... | 90 days |
| Vacuum Gauges.....                              | 90 days |

**Commented [EL11]:** Do you have a Chart / Pictures showing where all the Thermocouple sensors go? How about where the Vacuum Gage is?

### Thermocouple and Vacuum Calibration procedure:

#### PID Controller Calibration Procedure

\*\*\*\*IMPORTANT – Read through this entire procedure before beginning the process

#### Necessary Equipment:

1. A Thermocouple (TC) Simulator with the correct type of thermocouple (K, J, T, etc.)
2. An appropriate thermocouple extension wire with male plug attached at one end, and bare, stripped leads at the opposite end (approximately 4 feet in length)
3. A data log sheet to record readings
4. A reference vacuum tube (3 milli-Torr/micron and/or 4.9 milli-Torr/micron are recommended)

#### Preparation:

1. Unplug the machine's main power-cord and turn OFF the main power circuit breaker.
2. Unplug and label each white terminal block from the top of each PID module. **Cover the white terminal block with a piece of electrical tape to prevent accidental connection to the system.** Repeat this step for all heater modules at this time.

Heater modules can be identified as those having red and yellow thermocouple wires inserted in the connector at the bottom of the module in terminal 1 and 2 locations.



## LabTop 3000 Operator's Manual

3. Carefully remove the thermocouple wires at terminals 1 & 2. Label them accordingly. For type K thermocouples, the yellow wire must be attached to terminal 1, and red wire must be at number 2. Isolate each wire using electrical tape to ensure that the red and yellow wires do not come into contact with each other or any other conductive material. Repeat this step for all heat modules at this time.
4. Insert the thermocouple wires from **the thermocouple simulator** into terminals 1 (yellow) and 2 (red) of the terminal block of the module that is to be calibrated and then plug the terminal block into the respective PID module.

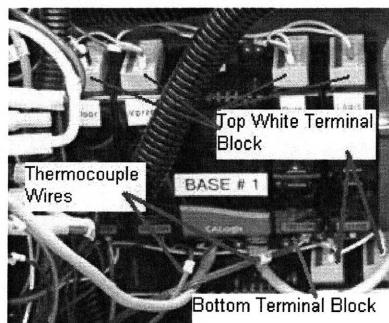
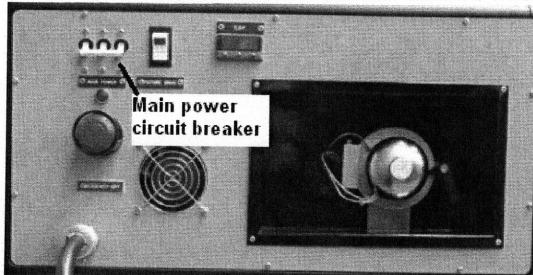



Figure 1

### Heat Zone Calibration :

1. Check that the PID module is correctly prepared (as indicated above) and then turn on the simulator. **The warm-up time of the simulator is approximately 30 minutes.** Adjust the simulator to the Sample # 1 reading (50°C). Prepare a data sheet to record temperature readings during the calibration process.




## LabTop 3000 Operator's Manual

Data sheet example :

| Data Collection             |                                    |                                    |   |   |                                   |                     |
|-----------------------------|------------------------------------|------------------------------------|---|---|-----------------------------------|---------------------|
| Data in: $^{\circ}\text{C}$ |                                    | Tolerance: $\pm 3^{\circ}\text{C}$ |   |   |                                   |                     |
| Sample #                    | Simulator Value $^{\circ}\text{C}$ | Calibration                        |   |   | 2 <sup>nd</sup> run after Actions |                     |
|                             |                                    | HMI Display Reading                | 1 | 2 | 3                                 | HMI Display Reading |
| 1                           | 50                                 |                                    |   |   |                                   |                     |
| 2                           | 70                                 |                                    |   |   |                                   |                     |
| 3                           | 90                                 |                                    |   |   |                                   |                     |
| 4                           | 110                                |                                    |   |   |                                   |                     |
| 5                           | 130                                |                                    |   |   |                                   |                     |
| 6                           | 150                                |                                    |   |   |                                   |                     |
| 7                           | 170                                |                                    |   |   |                                   |                     |
| 8                           | 190                                |                                    |   |   |                                   |                     |
| 9                           | 200                                |                                    |   |   |                                   |                     |
| 10                          | 300                                |                                    |   |   |                                   |                     |
| 11                          | 400                                |                                    |   |   |                                   |                     |
| 12                          | 500                                |                                    |   |   |                                   |                     |
| 13                          | 600                                |                                    |   |   |                                   |                     |
| 14                          | 700                                |                                    |   |   |                                   |                     |
| 15                          | 800                                |                                    |   |   |                                   |                     |

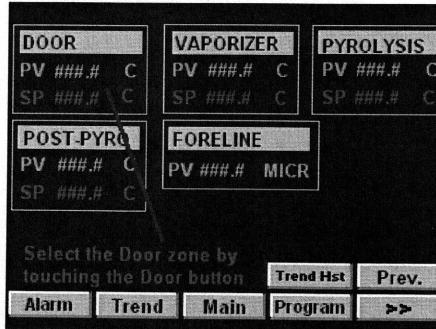
2. Plug in the main-power cord and turn ON the main power circuit breaker. The HMI and all associated modules will be turned ON. Wait for 30 minutes while the simulator stabilizes.



3. Check the stability of the simulator, and adjust it to the Sample # 1 Simulator value if it has changed. Record the reading of the simulator value on the data log sheet. Record the reading of the HMI display. The reading on the HMI display for that module should be within  $\pm 3^{\circ}\text{C}$  of the simulator nominal value as set on the simulator.



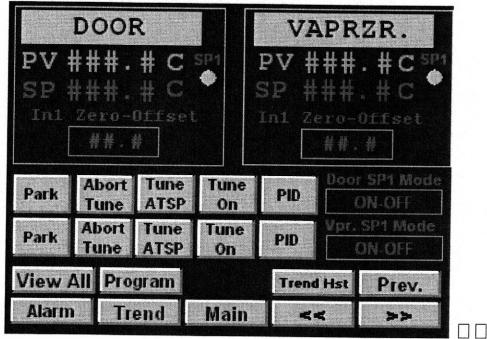
## LabTop 3000 Operator's Manual


Repeat this step for all other nominal values. If the reading is out of the tolerance, proceed to the **Zero Offset procedure** below.

4. Turn OFF the main power circuit breaker and **unplug the power cord from the electrical outlet**. Turn OFF the simulator and then move the thermocouple wires of the simulator to the next module to be calibrated. **CAUTION: The power cord must be unplugged from the electrical outlet to avoid any possible contact with dangerous voltages inside the system.**
5. Plug the main power cord to the electrical outlet. Turn ON the main circuit breaker. Turn ON the simulator and repeat step 3 and step 4 above.
6. After all modules have been calibrated, turn OFF the main power circuit breaker. Unplug the main power cord and then **return the system to its original configuration**.

### Zero Offset Procedure:

**This procedure must be performed very carefully.** It affects the accuracy of the module over the temperature range of the measurement. For type K thermocouples the temperature range is 0 °C to 1200 °C.


1. Turn on the main-power circuit breaker. The HMI and all modules are powered on. On the HMI, touch the associated zone to display the reading for that zone. For example, to calibrate the DOOR module the operator touches the DOOR zone as shown here.



The HMI now shows the next screen.



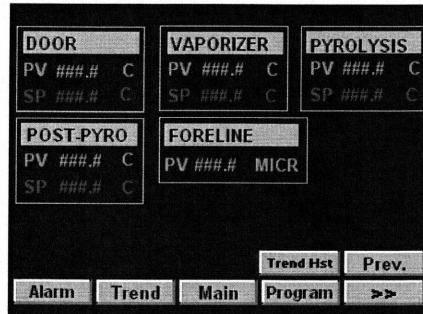
## LabTop 3000 Operator's Manual



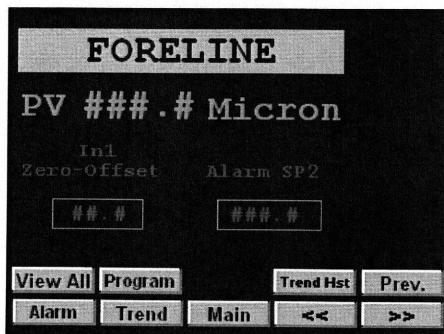
2. Touch the box under In1 Zero-Offset to enter the offset value for the DOOR module. The Offset Value = Reading on the Simulator – Reading on HMI (whether positive or negative). After the offset value has been entered, the PID will store the new value in its memory. After setting the offset value, perform the entire calibration sequence again.

**IMPORTANT - wait until the simulator and the module readings have stabilized before calculating the offset value.**

3. Proceed to the next heater module as necessary.


### **Vacuum Zone Calibration (Foreline):**

- A calibrated vacuum reference tube is required as specified above.


1. Turn on the main-power circuit breaker. The HMI and all modules are ON. On the HMI, touch the Foreline zone. Locate the Foreline sensor and unplug the black octal socket from the sensor. Insert the reference tube in the octal socket. Record the calibrated value which is printed on the tube's case.



## LabTop 3000 Operator's Manual

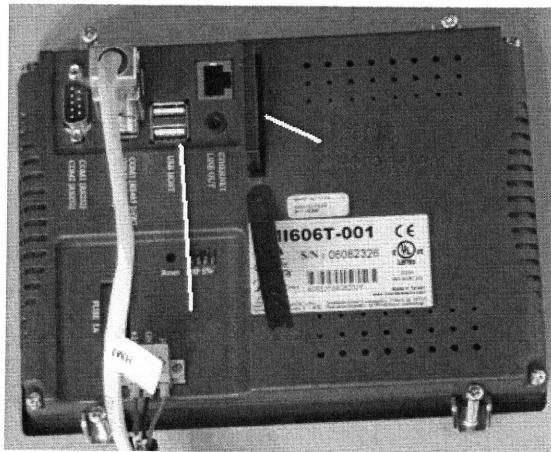


2. Touch the Foreline zone
3. The HMI now displays:



4. Touch the box under In1 Zero-Offset to enter the offset value for the FORELINE module. The Offset Value = the Reading on the Reference tube – Reading on HMI. After the offset value has been entered, the PID will store the new value in its memory.

**End of Calibration and Zero-Offset**




## Trend History Data Export Procedure

### Overview

Basically you'll be creating a .CSV file (comma separated values) using the HMI (Human-Machine-Interface) touch-screen controller, copying it to a flash-memory device, transferring it to a computer, pasting it into a spreadsheet template, and charting it.

You can use the touch screen to maneuver around *or* you can attach a USB mouse into one of the USB ports on the back of the HMI.



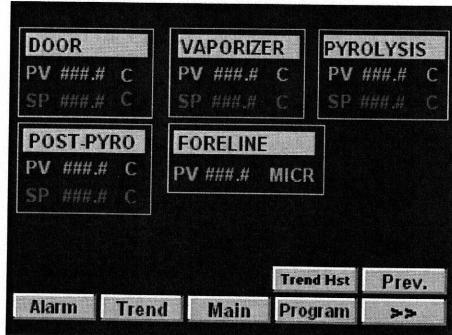
Windows CE works best if you plug in the mouse *before* you power up the HMI. The same goes for the flash-memory device.

**\*\*\*NOTE** - Some flash memory devices will *not* be recognized by Windows CE. Flash memory devices that *are* recognized can sometimes take up to 30 seconds to show that they're active.

**It is recommended that you read through this entire procedure before beginning.**



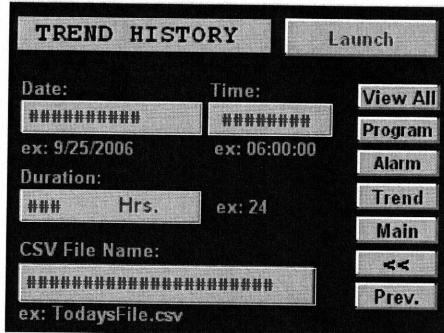
## LabTop 3000 Operator's Manual


### Procedure

Ensure that the Windows CE clock is set to your time-zone.

Then, from the "Main Screen" hit the ">>" button




which takes you to the "View All" screen.



Select "Trend Hst" from the "View All" screen (or from any other screen that has the "Trend Hst" button)



## LabTop 3000 Operator's Manual



Enter the data into each field. When you touch or click your mouse in each field, a small on-screen keyboard will pop up. You'll have to scroll back and forth to access the characters you need. **Enter the data in the exact format shown beneath each field** and hit the check mark  to enter the data into that field.

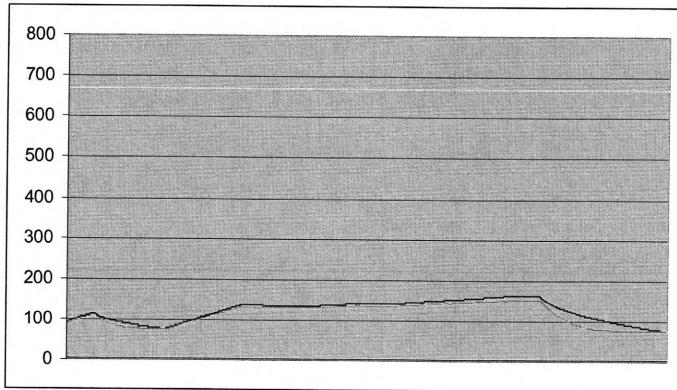
Once all of the data is entered, hit the “Launch” button in the upper right hand corner of the screen.

Next, hit the “Main” button and once you’re at the “Main Screen” hit the “Exit” button (or you can pull up the menu bar at the bottom of the screen and hit the “desktop” icon if you’re using a mouse).

From the desktop open “My Computer”. Open the “Storage Card” folder, and then the “TrendHstCSV” folder (My Computer\Storage Card\TrendHstCSV).

You'll see the file that you created listed twice, once as a .CSV file and once as a .hdr or header file (you may need to change the view to “details” to see the file type extensions).

Copy the .CSV version of the file and paste it onto the flash-memory device. The flash-memory device will show up as “Hard Disk” in the “My Computer” folder. **DO NOT paste the file into the Storage Card folder.**


The Storage Card folder contains application files and the Trend History files. The Storage Card capacity is 128MB.

**It's recommended to occasionally remove your Trend History files from the storage card so that you don't max out its capacity which could possibly effect the running of the application.**

Paste the data into Excel and use the Chart Wizard to chart it, which should display results similar to the sample chart below for a *successful* run (you may wish to include labels for each parameter).



## LabTop 3000 Operator's Manual



You can create a simple template to use with Microsoft Excel™ as follows:

| Date | Time | Door | Vaporizer | Pyrolysis | Post Pyro | Foreline |
|------|------|------|-----------|-----------|-----------|----------|
|------|------|------|-----------|-----------|-----------|----------|



### **PID Module Tuning procedure**

**\*\*\*\*IMPORTANT – Read through this entire procedure before beginning the process**

- **Tuning should ONLY be performed when any heater will not stabilize at setpoint or when a failed heater has been replaced.**
- **TUNE ONLY WHEN AND IF NECESSARY**

#### **Auto-tune:**

The Auto-tune procedure matches the controller to the process. Auto-tune can be performed as either “Tune” (from ambient temperature) or “Tune at Setpoint” (already at setpoint temperature).

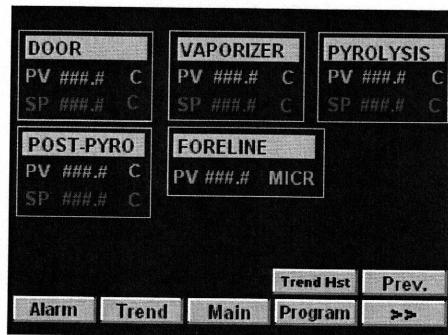
The “recommended” tuning method is determined by the following criteria:

- **Tune (“Tune On” button is used)**
  - a. Used when the setpoint is greater than 100°C and is started at *ambient* temperature. (Pyrolysis and Post-Pyro zones)
- **Tune at setpoint (“Tune ATSP” button is used)**
  - Used when the **setpoint** is less than 100 °C (Door and Vaporizer zones)
  - When **setpoint** control is poor (unstable with large oscillations)

#### **Tuning Procedure:**

4. Determine whether “Tune” or “Tune at setpoint” will be performed. If “Tune at Setpoint” will be performed, heat all zones to setpoint before continuing.

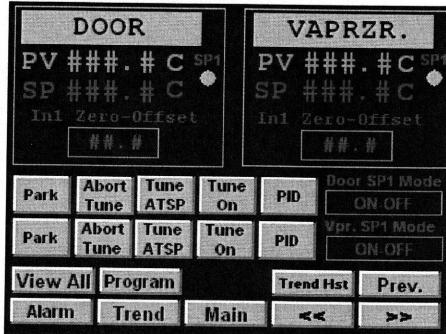
If “Tune” will be performed, ensure that all zones are first at ambient temperature and then proceed.


5. Turn the main power circuit breaker switch to the ON position. At the main Screen,



## LabTop 3000 Operator's Manual




hit **>>** which will cause the "View All" screen to be displayed.



6. On the display, select (touch) the zone to be tuned. For example, touch the DOOR zone to tune the DOOR heater. The following screen will then be displayed.



## LabTop 3000 Operator's Manual



Press the **“Tune On”** button to **“Tune”** the zone or press **Tune ATSP** to **Tune at setpoint**.

The **Auto-tune** program is now activated. **Tune or ATSP** will appear in the box underneath **“Door SP1 Mode”**.

7. When tuning has completed, (approximately 45 minutes for Door and Vaporizer **heaters** and approximately 30 minutes for Pyrolysis and Post-Pyro **heaters**) the display underneath **“Door SP1 Mode”** should indicate **“PID”** which indicates that the Auto-tune program has successfully completed.

Otherwise, the program will return a **“FAIL”** indication in the box under **“Door SP1 Mode”**.

8. The common causes of a failed **Auto-tune** are shown under the **Error Messages** section below.
9. Repeat step 1 to step 4 for auto-tuning the other heat zones (either **Tune or Tune at Setpoint**). **The FORELINE vacuum zone cannot be Tuned. Only heated zones are Tuned.**
10. Once the Auto-tune program exits successfully, a new set of parameters gets loaded into the memory of the PID controller. The process value will be stable (very small oscillations about the setpoint).

### Error Messages

Failures during the **Auto-tune** cycle can be caused by the thermal characteristics of the load (heaters) exceeding the **Auto-tune** algorithm limits.

### **Recommended actions:**



## LabTop 3000 Operator's Manual

1. Try "Tune At Setpoint" instead of "Tune"
2. Make sure the Tune program starts when the load is at ambient temperature (not above)
3. **Change the condition:** raise the setpoint (see Tune or Tune at Setpoint criteria above)



## LabTop 3000 Operator's Manual

### Appendix A

#### Coating Program Parameters

| Program # | Program Duration           | Number of segments |
|-----------|----------------------------|--------------------|
| 1         | 35 minutes                 | 4                  |
| 2         | 65 minutes                 | 4                  |
| 3         | 120 minutes (2 hours)      | 12                 |
| 4         | 150 minutes (2.5 hours)    | 7                  |
| 5         | 165 minutes (2.75 hours)   | 16                 |
| 6         | 180 minutes (3 hours)      | 7                  |
| 7         | 195 minutes (3.25 hours)   | 7                  |
| 8         | 225 minutes (3.75 hours)   | 16                 |
| 9         | 240 minutes (4 hours)      | 7                  |
| 10        | 300 minutes (5 hours)      | 16                 |
| 11        | 330 minutes (5.5 hours)    | 16                 |
| 12        | 360 minutes (6 hours)      | 16                 |
| 13        | 390 minutes (6.5 hours)    | 16                 |
| 14        | 420 minutes (7 hours)      | 16                 |
| 15        | 450 minutes (7.5 hours)    | 16                 |
| 16        | 1485 minutes (24.75 hours) | 15                 |



## LabTop 3000 Operator's Manual

### Appendix B

#### Parylene Deposition Troubleshooting Guide

This troubleshooting guide outlines corrective actions to be considered for resolving common Parylene Deposition System malfunctions. In the event of a conflict with work instructions specified by the end-user, the approved Para Tech work instructions will govern.

| Trouble             | Possible Cause                                   | Corrective Action                                                                                                                                                                                                                                             |
|---------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Vacuum Leaks</b> | O-ring damages                                   | Check all o-rings between loading door and cold trap exit to ensure that no silicon o-ring damage occurred during maintenance.                                                                                                                                |
|                     | Frozen cold trap o-ring(s)                       | Determine if cold trap/mechanical chiller was activated before the system was evacuated. Disassemble cold probe and cold trap o-ring, remove condensation, re-grease and retry evacuation.                                                                    |
|                     | Misplaced quick clamps                           | Inspect all quick clamps removed during maintenance and check that each is properly installed. The clamp should embrace both flanges with metal and silicon o-ring centered. No excessive pressure or torque should be necessary to tighten the quick clamps. |
|                     | Teflon tape seal at Foreline vacuum gauge sensor | Determine if Foreline vacuum sensor was properly re-installed with the use of Teflon tape (or equivalent) around the threads. No excessive pressure or torque should be necessary to tighten the sensor                                                       |
|                     | Faulty Manual Vent Valve                         | Inspect the Manual Vent Valve. Any malfunction of the internal mechanism when the valve is closed will permit air inflow to the system.                                                                                                                       |
|                     | Teflon tape seal at Manual Vent Valve            | Determine if Manual Vent Valve has a good seal at its Teflon-taped joints. No excessive pressure or torque should be necessary to tighten the joints.                                                                                                         |
|                     | Damaged vacuum hose                              | Inspect the orange hose(s) used as joints inside the deposition module. This hose is used to ease separation of tubing for maintenance, and excessive force used during maintenance could deform or damage the hose and jeopardize connections.               |
| <b>Heating</b>      | Defective thermocouples                          | Check that the heated zone in question has a                                                                                                                                                                                                                  |



## LabTop 3000 Operator's Manual

### Appendix C

#### System daily preventive maintenance worksheets

| Component/Location              | Monday |   |   |   | Tuesday |   |   |   |
|---------------------------------|--------|---|---|---|---------|---|---|---|
|                                 | Run 1  | 2 | 3 | 4 | 1       | 2 | 3 | 4 |
| Door                            |        |   |   |   |         |   |   |   |
| Door O-ring                     |        |   |   |   |         |   |   |   |
| Vaporizer Chamber               |        |   |   |   |         |   |   |   |
| Chamber entry tube              |        |   |   |   |         |   |   |   |
| Chamber inner surfaces          |        |   |   |   |         |   |   |   |
| Chamber lid o-ring              |        |   |   |   |         |   |   |   |
| Chamber lid                     |        |   |   |   |         |   |   |   |
| Chamber fixture shaft           |        |   |   |   |         |   |   |   |
| Chamber exit fittings           |        |   |   |   |         |   |   |   |
| Chamber exit o-rings            |        |   |   |   |         |   |   |   |
| Chamber exit inner o-ring       |        |   |   |   |         |   |   |   |
| Chamber exit quick clamps       |        |   |   |   |         |   |   |   |
| Cold trap entry fittings        |        |   |   |   |         |   |   |   |
| Cold trap chamber               |        |   |   |   |         |   |   |   |
| Cold trap o-ring                |        |   |   |   |         |   |   |   |
| Chiller cold trap probe         |        |   |   |   |         |   |   |   |
| Cold Trap exit tube             |        |   |   |   |         |   |   |   |
| Cold trap exit adaptor fittings |        |   |   |   |         |   |   |   |
| Manual main vacuum valve        |        |   |   |   |         |   |   |   |
| Manual vent valve               |        |   |   |   |         |   |   |   |
| Pyrolysis tube                  |        |   |   |   |         |   |   |   |
| Quartz Tube                     |        |   |   |   |         |   |   |   |



## LabTop 3000 Operator's Manual

### Appendix C

| Component / Location                   | Week ending on | MM/DD/YY | MM/DD/YY | MM/DD/YY |
|----------------------------------------|----------------|----------|----------|----------|
|                                        |                | Friday   | Friday   | Friday   |
| Vacuum pump oil level                  |                |          |          |          |
| Vacuum pump oil condition              |                |          |          |          |
| Vacuum pump dirt trap                  |                |          |          |          |
| Vacuum pump loading opening o-ring A   |                |          |          |          |
| Vacuum pump loading opening o-ring B   |                |          |          |          |
| Vacuum pump oil vent valve connections |                |          |          |          |

System  
weekly  
preventive  
maintenance  
worksheets

|                                     |  |  |  |  |
|-------------------------------------|--|--|--|--|
| Vacuum pump oil vent valve          |  |  |  |  |
| Vacuum pump ballast valve           |  |  |  |  |
| Vacuum pump after filter display    |  |  |  |  |
| Comments and/or replaced components |  |  |  |  |



## LabTop 3000 Operator's Manual

### Appendix C

#### System monthly preventive maintenance worksheets

| <u>Component / Location</u>                | <u>MM/YY</u> | <u>MM/YY</u> | <u>MM/YY</u> | <u>MM/YY</u> | <u>MM/YY</u> | <u>MM/YY</u> |
|--------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Foreline sensor tube                       |              |              |              |              |              |              |
| Foreline sensor connections                |              |              |              |              |              |              |
| Foreline sensor                            |              |              |              |              |              |              |
| Foreline gauge socket input connector      |              |              |              |              |              |              |
| Vacuum pump entry outer o-ring             |              |              |              |              |              |              |
| Vacuum pump oil ballast                    |              |              |              |              |              |              |
| <b>Comments and/or replaced components</b> |              |              |              |              |              |              |

Appendix C

System quarterly preventive maintenance worksheets

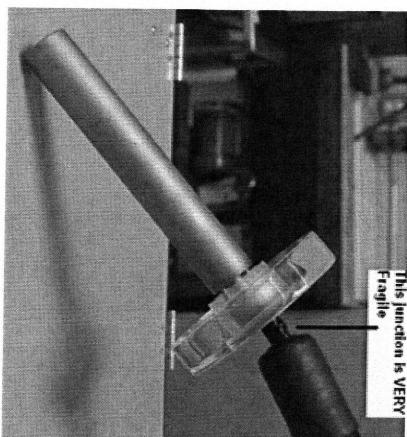
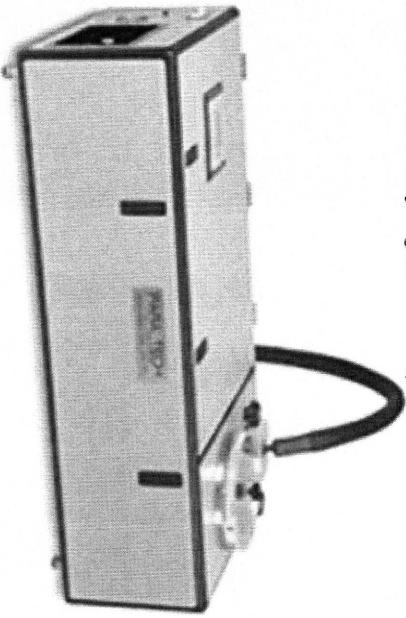
|                                    |  |
|------------------------------------|--|
| Door heater fuse                   |  |
| Door heater relay                  |  |
| Vaporizer heater                   |  |
| Vaporizer thermocouple             |  |
| Vaporizer heater fuse              |  |
| Vaporizer heater relay             |  |
| Pyrolysis furnace                  |  |
| Pyrolysis furnace                  |  |
| Pyrolysis thermocouple             |  |
| Pyrolysis furnace fuse             |  |
| Pyrolysis furnace relay            |  |
| Post-pyro heater                   |  |
| Post-pyro thermocouple             |  |
| Post-pyro heater fuse              |  |
| Post-pyro heater relay             |  |
| Chamber rotary seal                |  |
| Manual vent valve                  |  |
| Manual main vacuum connections     |  |
| Operator panel                     |  |
| PID Modules                        |  |
| PID Modules electrical connections |  |

Appendix C

System semi-annual preventive maintenance worksheets

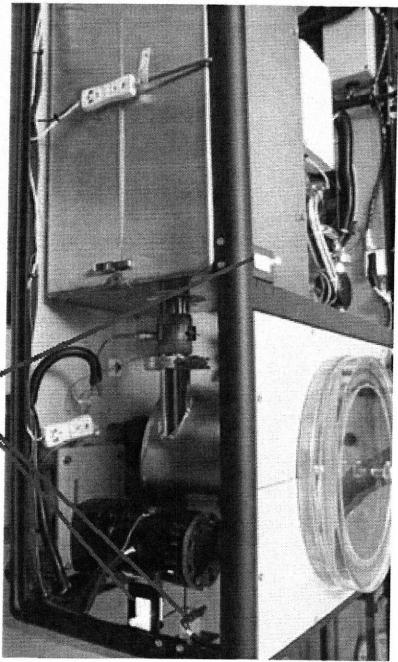
MM/YY      MM/YY      MM/YY      MM/YY

Friday      Friday      Friday      Friday



**Comments and/or replaced components**

|                                          |  |  |  |  |
|------------------------------------------|--|--|--|--|
| Chamber rotary seal o-ring               |  |  |  |  |
| Fixture drive gear                       |  |  |  |  |
| Fixture drive Timing belt                |  |  |  |  |
| Fixture drive motor gear                 |  |  |  |  |
| Fixture drive motor                      |  |  |  |  |
| Fixture drive switch                     |  |  |  |  |
| Cold trap-Pump fittings                  |  |  |  |  |
| Cold Trap -pump o-rings                  |  |  |  |  |
| Cold trap-pump quick clamps              |  |  |  |  |
| Manual main vacuum valve                 |  |  |  |  |
| Manual vent valve                        |  |  |  |  |
| Vacuum pump entry quick clamp            |  |  |  |  |
| Vacuum pump exit tube                    |  |  |  |  |
| Vacuum pump exit o-rings                 |  |  |  |  |
| Vacuum pump exit quick clamp             |  |  |  |  |
| Vacuum pump after filter chamber         |  |  |  |  |
| Vacuum pump after filter inner cartridge |  |  |  |  |

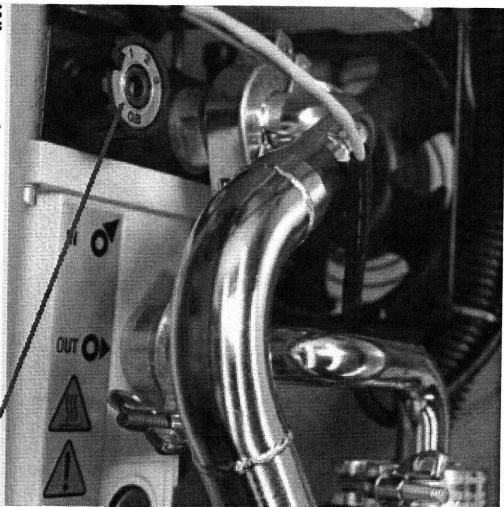
#### Important Chiller probe information


\*\*\*\*\* **IMPORTANT** - Avoid bending the chiller probe flex hose at sharp angles.

Use extreme caution moving it at all when frozen as it is very fragile.

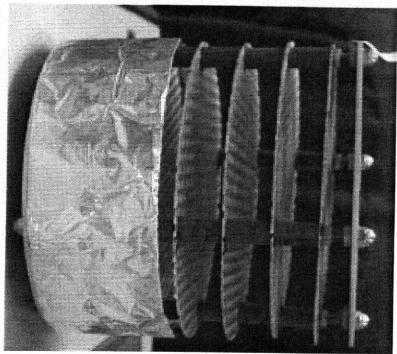


The cold probe houses RTD sensors that relay temperature feedback information to the chiller. The junction between the flex hose and the chiller probe must be handled with the utmost care.


### System Safety Interlock Switches

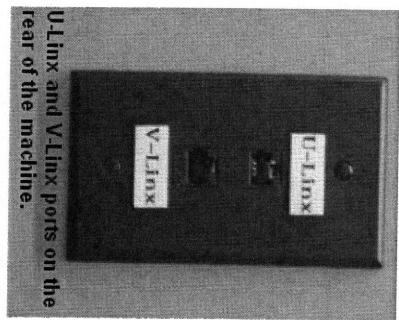


These interlock switches prevent system operation when the panels are removed. They can be bypassed if necessary by pulling them out to their fully extended positions.


Coating runs SHOULD NOT be performed with the panels removed as system tuning may be adversely effected.

### Vacuum pump ballast setting




Commented [EL14]: Which setting is the "Ballast" setting? If just says 1,2,3 on the pump gage you are showing in your picture.

**Substrate fixture with 3-inch aluminum foil barrier**



**Substrate fixture with 3 inch  
aluminum foil barrier**

**U-Linx and V-Linx ports**



**U-Linx and V-Linx ports on the  
rear of the machine.**

The U-Linx and V-Linx ports are used for computer and internet access respectively, and are used when engineering technical support assistance is required remotely.