3D Optical Profilometer VR-6000 Series # Measure Profiles, Flatness, and Roughness in as Little as 1 Second [New feature] Motorized rotational scanning for performing a wider variety of measurements # High-precision 3D measurement of an entire surface in as little as 1 second Visualization of complex shapes and curvature with submicron resolution ### Rotational scanning on a wide variety of materials Motorized rotation unit enables measurement around the entire circumference of the part HDR scanning algorithms for measuring both matte and shiny surfaces # Measure nearly any callout with a single device NEW Stable measurement of profiles, dimensions, roughness, and GD&T # High-Precision 3D Measurement of an Entire Surface in as Little as 1 Second ### Capture full surface data with 0.1 µm resolution ### Measurements in as little as 1 second #### No setup or preparation required Conventional measurement systems require a lot of preparation, including fixturing, leveling, and selecting a probe. With the VR Series, you can simply place the sample on the stage and click the Measure button. This makes the measurement process simple for anyone to perform. #### Scans in as little as 1 second KEYENCE designed the VR Series with a focus on improving measurement algorithms and hardware, resulting in measurements in as little as 1 second. As a result, substantially more samples can be processed, reducing work hours. This also leads to improvements in prototype analysis and in-process inspections. ### Accurate and repeatable measurements With general contact-based systems, numerical values might not be stable due to measurement location, measurement conditions, or measurement method. The VR Series automatically sets the measurement range and measurement conditions, ensuring accurate measurements without variations between users. | User | Measurement with conventional system | Measurement with
VR Series | |--------|--------------------------------------|-------------------------------| | User A | 0.34 | 0.35 | | User B | 0.29 | 0.35 | | User C | 0.35 | 0.35 | | | | | | User X | 0.31 | 0.35 | ### Rotational Scanning Eliminates Blind Spots ### Automatic rotation to perform measurements on all sides ### Simple Rotational Scanning #### World's first #### Motorized rotation unit that does not require calibration Measuring systems that rotate the target sample have always required centering and initial calibration. However, the VR Series requires no advanced calibration, making it easy for anyone to acquire data around the target. ### Reproduce cross-sectional shapes without cutting By taking measurements while rotating the target sample, blind spots are eliminated and the cross-sectional shape is accurately reproduced. This allows for easy and accurate measurement of wall thickness and the dimensions of areas that are difficult to see without cutting. # Measure a Wider Variety of Materials due to an Advanced Scanning Principle HDR scanning algorithm enables measurement of more materials NEW ### High dynamic range scanning It is now possible to instantly determine the optimum conditions and accurately measure the forms of glossy objects and objects made of materials that do not reflect much light, which was previously impossible with optical profile measurement systems. The dynamic range of scanning is up to 1000 times greater than with conventional methods. ### Optimal scan settings configured automatically With the VR Series, everything is configured automatically to suit the target, from the selection of the optimum brightness and measurement mode to focus positioning. Measurement itself is done with just the click of a button, ensuring that even new operators can measure without issue. ### Measurement range settings configured automatically The VR Series automatically recognizes the width and height of the target in order to automatically set the optimal measurement range. By eliminating the need to set measurement length, height range, and other aspects required with general measuring instruments, the VR Series ensures mistakes, such as failing to measure a certain part of the target, do not occur. Once a target is placed, the motorized stage automatically moves in the XY direction, and rotates the sample as required. ### A Single Device to Measure Nearly Any Callout ### Consolidate multiple measurement systems into one device The VR Series streamlines the inspection and analysis process by combining the measurement capabilities of multiple different systems into a single device. multiple measurement systems in one device ### Highly Accurate Wide-Area Measurement #### 2.6 times greater measurement range ### Measurement area up to $300 \times 150 \times 70$ mm $11.81" \times 5.91" \times 2.76"$ *The maximum measurement area may be limited to 300 x 125 x 70 mm 11.81" x 4.92" x 2.76", depending on the form of the target sample. #### From precision parts to large products The VR Series can measure a wide range of targets, including those with minute features such as electronic components and screws, as well as non-flat castings and assembled products. A high operating rate is achieved with a large number of measurement options. #### Measure multiple targets simultaneously With a 300 \times 150 mm 11.81" \times 5.91" measurement range, multiple objects can be placed on the stage and measured at the same time. The VR Series can also be used to measure a tray of parts, as well as equidistant pins or holes. Automating both the data acquisition and analysis in this way dramatically improves productivity. | 11011 | | | |----------------|--|--| | Electronic PCB | | | | Height (mm inch) | |------------------| | 2.562
0.1009" | | 2.555
0.1006" | | 2.371
0.0933" | | 2.489
0.0980" | | 2.511
0.0989" | | 2.609
0.1027" | | | ### Highly accurate and precise measurement ### Capture at high magnification, scan with high definition The combination of a high-resolution camera and high-definition scanning allows accurate reproduction of minute features and highly precise 3D measurements. ### Acquire precise 3D data Build precise 3D models with up to 25 million points of data. The overall shape of the target can be captured while maintaining a high resolution to measure fine surface textures. ### User-Friendly Measurement Functions ### Cross-section in any location With the VR Series, a variety of measurements can be performed based on the scanned data. A high-degree of freedom and intuitive controls allows nearly any measurement to be taken, and measurements can be edited or changed later. ### Abundant assist tools for accurate and repeatable measurements ### Measure difficult shapes Both optical and height data can be used to easily place assist lines at edges, virtual intersections, and axes of cylinders, all of which are difficult with conventional systems. #### Acquire the desired values Conventional measurement systems struggle to repeatably extract features, causing measured values to change. The VR Series uses the least squares method for cross-sectional data to extract elements such as lines and arcs, which allows stable and repeatable measurement results. ### User-Friendly Measurement Functions ### Profile measurement #### Faithfully reproduce contact profiles By measuring the 3D shape of a target, the VR Series is able to measure the height, width, angle, and radius from the cross-sectional shape. In addition, the non-contact design enables measurement of soft objects such as rubber and cloth products. The measurement of steep slopes and the surface measurement of hollow parts in which there is separation between surfaces can be performed without any need to worry about a stylus getting stuck. #### Sensor head ### Cross-section measurement #### Use data from the back and sides for measurement Data can be acquired around the surface of the part, including on the sides and backside. Non-destructive cross sectional measurements can be performed around the entire circumference of the part, and thickness measurements of thin, stamped products can be accurately measured. Straight bevel gear ### Flatness measurement #### Accurate measurement based on data from the entire surface Height differences and parallelism between two surfaces can be easily measured, using hundreds of thousands to millions of data points to perform the calculation. Maximum and minimum points can be automatically calculated, and flatness across the entire surface of the sample can be measured. Electronic PCB ### Warpage visualization ### Visualize subtle differences in height After acquiring height data, users can change the color in which height is displayed. This makes it easy to visualize differences across the surface. 10 different height-color patterns can be selected for indicating height, enabling quick judgement with just a single glance. Curvature measurement of tablet case ### User-Friendly Measurement Functions ### Volume and area measurement #### Analysis made possible with a non-contact measurement system Using height data, a target's volume and area can be measured. Counting the number of protrusions or depressions is also possible with a certain height specified as the threshold. Data can be identified from up to 3000 locations, making it possible to instantly quantify scratches and foreign matter. | | Volume | Cross sectional area | Surface area | Average height | Max. height | |---------|-----------------------|--------------------------------|------------------------|----------------|-------------| | | mm³ | mm² | mm² | mm | mm | | | in³ | in² | in² | inch | inch | | Total | 4.86 | 154.163 | 153.485 | 6.92 | 13.956 | | | 0.00029 ⁸³ | 0.23895" ² | 0.23790 ¹¹² | 0.272" | 0.549" | | Maximum | 0.058 | 1.909 | 1.934 | 0.046 | 0.177 | | | 3.53937 ⁸³ | 0.00295" ² | 0.00299 ¹¹² | 0.002" | 0.007" | | Minimum | 0 | 0.001
1.55000" ² | 0 | 0 | 0 | | Average | 0.02 | 0.634 | 0.632 | 0.028 | 0.057 | | | 1.22047**3 | 0.00098" ² | 0.00097 ^{#2} | 0.001" | 0.002" | Measurement of number of grains/volume of topography ### Dimensional measurements ## Extract accurate edges from height and image data The VR Series measures the XY dimension while viewing the target from directly above. In addition, since height data is also acquired, you can accurately measure objects that have sagging surfaces or edges that are difficult to ascertain. Cutting surface of casting ### **GD&T** measurement ### Support for a wide range of drawing callouts GD&T measurements such as straightness, circularity, and perpendicularity can be performed using various orientation and position tolerance tools. Even flatness measurements that traditionally were time consuming to measure can be captured in an instant. Profile measurement of bolt ### Roughness measurement #### Non-contact roughness measurement A total of 42 roughness parameters can be measured, including Ra, Rz, Sa, and Sz. Measurement results are compliant with ISO 4287 (1994, 2001) and ISO 25178. Blasted sample Roughness reference sample ### Wide-Variety of Analysis Tools ### Compare data between products Scan data acquired from two different parts can be overlaid, and differences can be visualized with a height color display. Instant analysis can be performed, instead of painstakingly trying to identify differences through trial and error. ### Compare CAD data to measurement data CAD data can be superimposed on measurement data to determine whether the shape is as intended. Prototypes or other manufactured parts can be quickly evaluated to determine if the product meets design specifications. ### Immediate analysis of multiple data files Repeated image processing and measurement operations can be automatically performed across multiple parts. This simplifies measurement of numerous targets and allows the user to see differences at a glance while also eliminating wasted time and setting errors, significantly improving overall work efficiency. Apply measurements from one sample to other samples Profile measurement of plastic molded part Ascertain differences by displaying analysis results of multiple samples and 3D data side by side Distortion analysis of die-cast parts with different manufacturing conditions ### Versatile Functionality ### Automatic differentiation of surface conditions Surface roughness has been widely used as a method of quantifying surface conditions, but sometimes commonly used parameters do not differ in value. The VR-6000 makes it easy to determine which parameters to use when first beginning analysis. Roughness parameter suggestions Ra and Rz are two of the most common roughness parameters, but there are numerous other parameters as well. The Parameter Recommendation function makes it easy to quickly determine which roughness parameter is best for evaluating a specific target. Even novice users are able to quickly visualize and quantify differences in appearance and texture. ### Visual observation Samples can be observed and imaged under magnifications ranging from 12x - 160x. High-magnification, high-resolution images can be captured and saved with just a single click. ### Deep depth-of-field with a telecentric lens The VR Series features a unique telecentric lens based on advanced optical technology that KEYENCE has developed over 20 years. Observation in high resolution, low distortion, and with a deep depth of field have been achieved. Conventional Connector VR Series Connector ### Equipped with a depth composition function If the depth-of-field is insufficient when a sample has a large height change or when the magnification is increased, the depth composition function can be used to capture multiple images of the sample across different focal planes, creating a fully-focused image. ### Inspection and Quality Control Functions ### Pass/fail inspection and reporting Pass/Fail judgment function By setting the measurements and tolerances, users can obtain pass/fail inspection judgements based on the measurement results. All of the pre-configured measurements are performed automatically with the click of a button. Pass/Fail judgment function Statistical analysis function Statistical analysis software is included as a standard feature. Major statistical values such as average, σ , 3σ , 6σ , and Cpk can be automatically calculated and displayed from the inspection results. Information such as the measured date/time and lot number is also automatically saved, so users can easily search for the results of previous measurements. Graphs and histograms are automatically created for quick visualization of trends. Trend graph Statistical analysis NEW Customized Excel report output function When a measurement is complete, you can automatically output the results to a specified cell in a specified Excel spreadsheet. There is no need to change your current reporting, as the VR Series can adapt to your processes. *Excel is a registered trademark of Microsoft Corporation in the United States and/or other countries. | | _ | | | | In | spection | n report | | | | K-0001-01
on XX/XX/20XX | | | | |---|---|-----------------------|---------------------------|-------------|---------------------------|-------------------|------------------|---|-------|---------------------|----------------------------|--|---------|--| | | | Cu | stomer nam | е | XXXX | X Corp | oration | | | Keyence Corporation | | | | | | | | Iter | n number | | 1234AB001 | | Numbe
items | | | 10 | | | | | | | | Ιte | m name | | Base plate | | | | | | | | | | | | | Inspection Items Equi | | s Equipment | criterion | 1 | 2 | 3 | 4 | 5 | judgment | | | | | | Ī | 1 | Bending heig | ht VR | 25±0.05 mm | 25±0.05 mm 25.002 | | | | | OK / NG | | | | | | Ī | 2 | Angle | VR | 35±0.2 mm | 35.15 | 35.11 | | | | OK / NG | | | | | | | 3 | Radius VR 15±0.3 mm 14.95 | | Radius VR 15±0.3 mm 14.95 | | VR 15±0.3 mm 14. | | 14.81 | | | | OK / NG | | | | | 4 | Roughness | VR | 3.2 μ m | 2.8 | 2.6 | | | | OK / NG | | | | | 1 | ı | _ | | | | | | | | | | | | | ### Combining multiple 3D data sets for extended data analysis ### NEW VR-VL conversion module (VR-H4L) High accuracy 3D data obtained with the VR-6000 can be used for a wide variety of 3D analyses. 3D analysis function #### Data composition Separate 3D data acquired from different angles can be combined into a single data set. #### CAD comparison measurement Comparing a retainer valve with CAD data makes it possible to determine the degree of eccentricity at just a glance. #### GD&T Evaluation of the shape, orientation, and location tolerance is possible even for high-precision parts as small as a fingertip. ***Requires VL-H3G GD&T software** #### CAD data conversion (Reverse engineering) By scanning the actual product, the shape can be converted directly into STEP data. *Requires VL-H3R CAD conversion module #### VR-VL data binding Data acquired with the VR-6000 Series can be combined with data acquired with the VL-700 Series. *Requires VL-H3G software ### Technology for High-Precision Applications #### [Measurement principle] #### Light-section method Structured light is emitted from the transmitter lens and projected onto the surface of the object. The reflected light is then detected by the receiver lens and will appear banded and bent based on changes in the topography of the surface. Triangulation is then used to calculate and measure the height of the surface. #### High-definition CMOS sensor By adopting a large format, high-definition CMOS, low noise data is acquired across the entire field-of-view. RGB data is acquired for each pixel, providing excellent color imaging for surface inspection. #### High-precision telecentric lens To enable high-accuracy measurements throughout the field of view, the VR Series uses a telecentric lens with extremely low lens aberration. Objects can be captured as they actually appear and at their actual size, ensuring high measurement accuracy anywhere on the screen. Normal camera lens Distortion at the periphery Minimal distortion in the field of view ### Large-aperture, high-resolution lens A total of three large-aperture high-resolution lenses are mounted on the transmitter and receiver parts. With the advanced optical design, it is possible to acquire high-precision and high-definition measurement data at both low and high magnifications. # Guaranteed Accuracy in Compliance with National Standards ### Traceable measurement results #### Accuracy guarantee In order to perform highly reliable measurements as a noncontact measuring machine, traceability to national standards is ensured. A calibration certificate, inspection report, and traceability diagram are included with the product as standard. #### Inspection reports/calibration certificates Even after the VR Series has been installed, KEYENCE can carry out calibration and adjustment work and re-issue the calibration certificate. ### Complete calibration with the touch of a button Using the VR Series calibration gauge, which provides traceability to national standards, calibration work can be performed accurately in the customer's own environment. A calibration certificate, inspection report, and traceability diagram are also included with the calibration gauge. Calibration gauge OP-88275 (optional) ### Remote and local operations #### Company licenses for multiple PCs www The VR-6000 Series can be used with a company license, meaning the software can be installed on any computer within an office. This lets all staff share data and perform other activities quickly to accelerate projects. The license also enables remote usability, allowing users to work not only from home, but also from other sites or hotel rooms while on business trips. #### Observation and measurement in one device By combining various equipment into one device, this system can help reduce operation and engineering hours by providing a one-stop solution to various problems. #### Unique direct sales system support KEYENCE employs a direct sales system that eliminates intermediaries such as distributors and dealers. Technical sales and field engineers are armed with a wealth of specialized knowledge that allows them to quickly respond to various inquiries. This means that KEYENCE can support customers through extensive after-sales services. KEYENCE also offers on-site inspection and calibration services in addition to free equipment replacement in the event of a malfunction, providing users with peace of mind even after purchasing. ### Examples of Applications by Department ### Development and design Intuitive operation enables quick qualitative and quantitative evaluation. In addition, parts can be compared directly against their CAD model to determine manufacturing differences. ### Prototyping and evaluation Use of the batch processing and comparison function makes it possible to greatly improve the efficiency of prototyping and evaluation work. Parts produced with different materials and processes can be compared to see how their surface conditions differ. Confirmation of sink marks due to differences in plastic materials Evaluation of changes in PCB warpage due to heating Leak evaluation of seals on sensor cases Quantification of groove depth in tire wear testing # Production technology and manufacturing Downtime is reduced and yield is improved by installing the VR Series near production lines so that analysis can be performed immediately if a problem occurs. Tooling wear and part deviation can be instantly identified so processes can be adjusted. ## Quality assurance and quality control Use of the inspection mode allows anyone to easily and accurately carry out pass/fail incoming and outgoing inspections. Statistical values are automatically tracked for trend analysis, and results can be exported for integration with existing databases. #### Drill contour/dimension measurements Warpage verification of connector electrodes Evaluation of differences in good vs. defective parts Outgoing inspection ### Examples of Applications by Industry ### Automotive and aerospace #### Wear evaluation of brake pads Development and design departments | Content | Ra | HZ | Ra | Hz | Ra | Hz | Ha | Hz | |---------|------|-------|-------|-------|-------|--------|------|------| | Unit | μm | sample1 | 8.85 | 59.80 | 10.50 | 57.84 | 12.02 | 135.27 | 0.79 | 3.32 | | sample2 | 8.89 | 58.10 | 8.37 | 63.10 | 8.07 | 65.99 | 0.95 | 4.37 | | | | | | | | | | | Visualize wear with a height-color display and quantify surface conditions via roughness parameters. ### Durability testing of bearings Development and design departments Virtual cross-sections can be drawn across the entire surface of the part to instantly understand how shape and contour changes. #### Identify defective components Quality assurance and quality control departments Defective products can be compared against their CAD model for quick failure analysis. #### Profile measurement of valve train components Production technology and manufacturing departments Parts that would be impossible to measure with conventional equipment can be easily measured with the VR Series. ## Semiconductors and electronic devices #### Checking battery curvature Quality assurance and quality control departments By using height color displays to visualize the condition of deformities, you can clearly see the difference between the center and the edges of a part. This allows for quick implementation of countermeasures to alleviate the issue. ## Chemicals, pharmaceuticals, and food products #### Checking foundation filling Production technology and manufacturing departments You can measure flatness to check if a product is evenly filled, which leads to optimization of the mold and the pressure conditions. Since the VR Series is a non-contact system, manufacturing conditions can be adjusted quickly and accurately to improve yield. ### Defect analysis, PCB connectors, parallelism measurements Quality assurance and quality control departments As a method of analyzing connector insertion defects, you can measure parallelism and dimensions based on the back side, which was difficult to implement in the past. Improvements in analysis capabilities will also lead to improvements in reliability from your suppliers. ### First article inspection of stamped parts Production technology and manufacturing departments There is no need to cut products or grab them with hand tools. You can improve productivity by shortening the time required for first article and random sampling inspections. ### List of Product Specifications ### Fully-automated model VR-6200 #### XYZ-axis motorized control ### 100 mm 3.94" height spacer op-88630 Inserting this 100 mm 3.94" high spacer between the measurement unit and the base allows you to measure objects up to 167 mm 6.57" in height. This extra space can be also used for use of a heating stage or special fixture. ### Motorized rotation unit VR-RU2 This motorized unit is used to secure, tilt, and rotate the target object, to eliminate blind spots when taking measurements. This makes it possible to evaluate vertical wall contours and make evaluations based on the back side without cutting the target object. *Optional accessory for VR-6200 only ### Standard model VR-6100 XY-axis manual control Z-axis motorized control ### Motorized stage VR-S400 The manual stage model can be upgraded to a motorized stage later on. This enables quick and accurate stitching, as well as easier navigation around a sample. #### Large sample stage A variety of large-sized or special stages are available to meet your needs. Measurement can be performed for various products, including large PCBs and housings that cannot be placed on the stage. Contact us for more details. ### Rotational fixturing kit op-88677 Fixturing tool for performing rotational stitching on objects such as shafts or rods. VR-6200 VR-6100 Head - Controller VR-6000 Control PC Motorized rotation unit VR-RU2 (optional) *Optional accessory for VR-6200 only Motorized stage VR-S400 (optional) *Optional accessory for VR-6100 only Monitor Standard software set VR-A2*1 Measurement expansion module **VR-H4J** (optional) Comparative measurement module **VR-H4CA** (optional) VR-VL data-link software VR-H4L (optional) *1 Models may vary according to the instrument language. Calibration gauge OP-88275 (optional) Tilt stage OP-87709 182 7.17 8 × M6 Depth 10 0.39" Unit: mm inch ### Specifications #### ■ VR Head/Controller | | Controller VR-6000 | | | | | | | | | | | | | | | | | | |---------------------------------------|--------------------------------|---|--|---------------------|--------------|--------------|--------------------------|-----------------------|--------------|--------------|--------------------------|--------------------|--------------|--------------|--------------------------------------|--------------|--------------|--------------| | Model | Head | | | | Full | | 6 200
rized mo | odel | | | | | ; | | 6100
d mode | el | | | | Camera Magnification on a 15" monitor | | | | ow mag
vide fiel | | | | ligh mag
(high re: | | | | ow mag | | | High magnification (high resolution) | | | | | Magnification | on a 15" monitor | | 12× | 25× | 38× | 50× | 40× | 80× | 120× | 160× | 12× | 25× | 38× | 50× | 40× | 80× | 120× | 160× | | Field of view | Horizontal: mm | inch | 24.0
0.94" | 12.0
0.47" | 8.0
0.31" | 6.0
0.24" | 7.6
0.30" | 3.8
0.15" | 2.5
0.10" | 1.9
0.07" | 24.0
0.94" | 12.0
0.47" | 8.0
0.31" | 6.0
0.24" | 7.6
0.30" | 3.8
0.15" | 2.5
0.10" | 1.9
0.07" | | Tield of view | Vertical: mm inc | ch | 18.0
0.71" | 9.0
0.35" | 6.0
0.24" | 4.5
0.18" | 5.7
0.22" | 2.9
0.11" | 1.9
0.07" | 1.4
0.06" | 18.0
0.71" | 9.0
0.35" | 6.0
0.24" | 4.5
0.18" | 5.7
0.22" | 2.9
0.11" | 1.9
0.07" | 1.4
0.06" | | Zoom | | | 1x to 4x | | | | | | | | | | | | | | | | | | Display resoluti | on | 0.1 μm | | | | | | | | | | | | | | | | | | Height
measurement | Without Z stitching | | 10 mm | า 0.39" | | | 1 mm | 0.04" | | | 10 mn | n 0.39" | | | 1 mm | 0.04" | | | Height | range | With Z stitching | 50 mm 1.97" | | | | | 30 mn | n 1.18" | | | 50 mr | n 1.97" | | | 30 mr | n 1.18" | | | measurement | Repeatability | Without Z stitching | | | | | | | | 0.4 | μm | | | | | | | | | | (σ) ^{*1} | With Z stitching | | | | | | | | 1.0 | μm | | | | | | | | | | Measurement | Without Z stitching | ±2.5 µm | | | | | | | | | | | | | | | | | | accuracy | With Z stitching | | | | | | | | ±4.0 |) µm | | | | | | | | | Width | Repeatability (σ | r)*1 | | 1 μ | ım | | | 0.5 | μm | | | 1 | μm | | 0.5 μm | | | | | measurement | Measurement a | ccuracy*1 | | ±5 | μm | | | ±2 | μm | | | ±5 | μm | | ±2 μm | | | | | Stitching | | Fully-automated measurement (XY automatic control + Z automatic control) (XY manual measurement (XY manual operation + Z automatic control) | | | | | | | | | | | | | | | | | | function*2 | | Au | tomatic | mappin | g creati | on, Auto | matic a | rea sett | ing | - | | | | | | | | | | | Motorized rotati | ional unit | Supported | | | | | | | | | Not supported | | | | | | | | XY measurab | le range ^{*2} | | 300 × 150 mm 11.81" × 5.91" | | | | | | | | 92 × 86 mm 3.62" × 3.39" | | | | | | | | | | XY stroke | | | 278 > | < 134 m | m 10.94 | " × 5.28 | " (moto | rized) | | | 70 | 0 × 70 n | nm 2.76 | " × 2.76 | (manu | al) | | | Stage | Z stroke | | 69 mm 2.72" (motorized) | | | | | | | | | | | | | | | | | | Load capacity | | | | | | | | | | 9.92 lb | | | | | | | | | Working dista | | | 75 mm 2.95" | | | | | | | | | | | | | | | | | Image receivi | | | 4 megapixel monochrome CMOS Double-telecentric lens × 2 | | | | | | | | | | | | | | | | | Transmitter le
Receiver lens | | | | | | , | | | | | entric le
ecentric | Light sources | Observation lig Measurement li | | | | | | | | LED IN | | red, blue
ELED | e, green |) | | | | | | | | Power voltage | giit source | | | | | | | 100 to 2 | | ±10%. | 50/60 ^L | 7 | | | | | | | Power
supply | Power consump | otion | | | | | | | 100 10 2 | | A max. | 30/00 11 | | | | | | | | Environmental | Ambient tempe | | | | | | | | +15 | | +59 to | 86°F | | | | | | | | resistance | Ambient humid | | | | | | | 2 | | | | | n) | | | | | | | | Controller | • | 20 to 80% RH (no condensation) Approx. 4 kg 8.82 lb | | | | | | | | | | | | | | | | | Weight | Head ^{'3} | | Арргох. 28 kg 61.73 lb Арргох. 25 kg 55.12 lb | | | | | | | | | | | | | | | | | Data processi | 1 | | Dedicated PC specified by KEYENCE | | | | | | | | | | | | | | | | | Compatible O | | | Windows 10 Professional / Windows 11 Professional | | | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | | | | | ^{*1} Value obtained using KEYENCE's specified standard gauge with measurement in KEYENCE's specified measurement mode (ambient temperature: 23±1°C 73.4±1.8°F) *2 Measurement expansion module (VR-H4J) required *3 Weight of only measurement unit: Approx. 11 kg 24.25 lb CONTACT YOUR NEAREST OFFICE FOR RELEASE STATUS #### **KEYENCE CORPORATION OF AMERICA** 500 Park Boulevard, Suite 200, Itasca, IL 60143, U.S.A. ■ +1-201-930-0100 ■ keyence@keyence.com CALL TOLL FREE 1-888-KEYENCE TO CONTACT YOUR LOCAL OFFICE