Power Train Siemens design based 440 MW - 50 Hz dual fuel (gas/oil) fired
<u>Unused, orginally packed, full</u> warranty/guaranty
PRESENTED BY:
USP82

ATRIUM on 5[™] 9th Floor Sandton City Gauteng South Africa 2091

- Technical descriptions:
 - GT description
 - HRSG description
 - ST description

-	GAS TURBINE				
P. Contraction of	EU Manufacturer	291 MW Gas Turbine, single shaft, cold end drive; annular combustor, heavy duty			
	STEAM TURBINE				
1000	EU Monufacturer	167 MW Steam Turbinethree cylinder type			
		HR9G			
EMPERATE	EU Manufacturer	HRSG horizontal flow type, equipped with natural gas post-firing			

- Direct contracts with power train manufacturers
- Equipment with its basic design fully approval
- The system can potentially work for district heating

CCGT-440 MW Main technical features

GT set includes:

- Electrical generator
- Static starter (SFC)
- Excitation system

Operation mode:

- Heat balance diagram slows to start operation depending on unit thermal condition:
 - Cold startup (after 36 hours outage) less than 100 times during total operation life
 - Warm startup (less than 35 hours of outage) less than 1900 times during total operation life
 - Het startup (within 1-8 hours of outage) lass than 8000 times during total operation life)
- Main fuel : gas: reserve fuel: diesel
- Isolated operation of GT is not envisaged
- The CCGT operates on variable pressures' mode

AE94,3A final assembly area

CCGT-440 MW main technical features

- Technical descriptions:
 - GT description
 - HRSG description
 - ST description

Technical description: Gas Turbine 94.3A4

Single shaft GT comprising :

- 15 stage compressor.
- 4 turbine stages
- Single shaft rotor with central tie rod
- ➤ 2 bearings
- > Axial discharge
- > Generator driven at compressor side
- Hydraulic Clearance Optimization system
- Annular type combustion chamber lined with individual and replaceable ceramic tiles
- > 24 hybrid burner for fuel gas and fuel oil
- Variable Inlet Guide Vanes
- All vanes and blades replaceable with rotor in place

The GT shall be with dual fuel burners: dry low NCx burners for natural gas operation and water injected for low NOx emission during light oil operation

- CCGT-440 MW main technical features
- Technical descriptions:
 - GT description
 - HRSG description
 - ST description

Technical description: HRSG

- HRSG horizontal three-flow HRGS.
- HRGS: with horizontal_profile, drum-type, three pressures mode (HP, IP, LP) with
 natural circulation at steam generating circuit with intermediate reheating.
- Discharge of wasted gas is through dedicated chimney.

Amblent t ^a		- 47	+12	+ 15
Relative GT load factor	%	100	100	100
Exhaust Gas Temperature after GT	7 C	536	557	572
Exhaust Gas Flow Rate after GT	kg/s	713	717	675
Natural gas (NG) consumption for re-combustion at HRS3	m ³ /h	9120,56	7233,55	7233,55
NG net heating value	kJikg	48675,89	48675,89	48575,89
Exhaust gas t ^o at HRSG inlet section (after re-combustion)	٥C	633,3	632,9	652
Exhaust gas flow rate at HRST in of section (after re-combustion)	kg/s	714,74	718,38	676,39-
High Pressure Loop				
Seam pressure after H ¹⁷ re-heating	MPa	13,43	13,49	13,40
Steam t ^e after HP re heating	10°	578,6	578.6	578,6
Steam flow rate after HP re-heating		323,787	325,408	323,184
Intermediate pressure loop				
Steam pressure after IP re-heating	MPa	3,410	3,430	3,400
Steam P after IP re-heating	0C	338,2,2	338,8	338,9
Steam flow rate after IP re-heating	Uhi	47,628	47.484	43,992

Technical description: HRSG

Low pressure loop				
Steam pressure after LP re-heating	MPa	0,518	0,506	0,499
Steam t ^o after LP re-heating	0°	276,2	268,7	267,3
Steam flow rate after LP re-heating	th	47,652	47,484	45,768
Reheating loop (Cool Re-heating)				
Steam Pressure at HRSG re-heating section inlet	MPa	3,41	3,43	3,40
Steam tº at HRSG re-heating section inlet	°C	381,7	381,5	381,4
Steam flow rate at re-heating section inlet	th	317,484	319,104	316,908
Reheating loop (Hot Re-heating)				
Steam Pressure at HRSG re-heating section putiet	MPa	3,28	3,30	3,27
Steam t ^e at HRSG re-heating section outlet	°C	676,6	576,4	580,0
Steam flow rate at re-heating section outlet	th	365,136	366,688	362,676
Exhaust gas t ^o at HRSG chimney inlet	\$°	90.8	91,9	91,7
Steam pressure after IP re-heating	MPa	2,410	3,430	3,400
Steam t ^o after IP re-heating	°C	338 2.2	338,8	338,9
Steam flow rate after IP re-heating	Vb	47,628	47,484	43,992

CCGT-440 MW main technical features

Technical descriptions:

- GT description
- HRSG description
- ST description

Precontation 1:00 Flavo, day metrils gain

SUMMARY

Gas Turbine / Steam Turbine - Made by Siemens / Ansaldo Energia HRSG - Made by NOOTER ERICKSSEN

Year: 2013 - New Unused

Location: Europe, available immediately

