

161 Industrial Boulevard
Turners Falls, MA 01376
Phone: 413-863-3500
Fax: 413-863-3157

Steam Turbine Cogeneration System

Schweitzer

Lee, MA
July, 2004

SYSTEM OVERVIEW AND OPERATING PROCEDURES

Table of Contents

- I. Turbine Generator Controls
- II. Operating Procedure for Turbine Generator
- III. Operator Interface Terminal (OIT) Screen Shots

I TURBINE GENERATOR CONTROLS

The turbine generator control panel contains the process control logic and the turbine starting and stopping controls.

The turbine generator control system consists of the following components:

- Allen Bradley SLC500 series process controller with operator interface and a remote operator interface.
- Airpax Staktach 2 dual speed switches

The following pushbuttons, switches, and lights are included on the turbine generator control panel:

- Mechanical Overspeed test button
- Keyed control power switch (key removable in OFF position)
- Emergency stop pushbutton (push to Trip)
- Control power available light

Mounted on the front of the turbine control panel is an Allen Bradley Panelview plus, serving as the Operator Interface Terminal (OIT). For screen shots of the OIT, please refer to section III of this document.

The following indications are included on the OIT:

- Turbine Tripped, Ready to Start, Speed Ramp
- Generator Circuit Breaker Closed/Open
- Controlling Parameter (Speed, kW, exhaust pressure, or valve limiter)
- Status of relays

The following values can be monitored on the OIT:

- Steam pressure (exhaust, inlet, nozzle)
- Throttle Valve Position
- Turbine generator power output
- MWH
- Lube Oil pressure
- All Temperature indications

The Turbosteam Operator Interface displays a list of system alarms and trips with first-out indication on trips.

The lube oil system is started and stopped using power switch located just above lube oil reservoir.

System protection trips will not allow system reset, startup, circuit breaker closure, or will cause a trip if the breaker is closed.

II OPERATING PROCEDURE FOR TURBINE GENERATOR

****Notify proper personnel that system will be started:**

- Control Room

Note: These locations must be contacted when either starting system or system shutdown.

SYSTEM PRE-START PREPARATION

1. Confirm air supply is available to the turbine control valve.
2. Confirm Line up of cooling water to Lube Oil Cooler.
3. Attend to steam stop and drain valves as necessary to prepare turbine for starting.
 - 3.1. All turbine drain valves should already be open from the previous shutdown. Close valves so they are just cracked.
 - 3.2. Start Lube Oil System Using the On / Off Switch located above Lube Oil Skid. Check to ensure pressure increases above alarm and trip point settings.
 - 3.3. Drain warm-up line then crack open slowly to admit steam to the turbine and exhaust piping. These will help equalize pressure across the main exhaust isolation valve for ease of opening. open turbine casing drain valve (located on skid next to turbine)
 - 3.4. Drain Inlets steam line-using bypass though the moisture separator and out the bottom drain. Line-up high-pressure steam up to trip valve. Slowly throttle drain valve shut to build pressure and equalize across inlet valve. Ensure condensate trap located on moisture separator just before the trip valve is functional.
 - 3.5. Allow Turbine casing and piping to warm-up:
 - 3.5.1. Cold Start – Turbine casing needs to be warmed up for 30 minutes.
 - 3.5.2. Hot Start – Ensure that all condensate is clear.
4. Full open Exhaust valve, then full open Inlet valve and shut the warm up line to exhaust and shut bypass around inlet valve.
5. Verify there are no leaks on utilities. If leaks are found, have them fixed before proceeding.

SYSTEM START

1. The operator RESETS system.
 - 1.1. Go to the OIT Trip page. Press on the button labeled System reset located on bottom center of screen.
 - 1.1.1. If all faults are clear, the controls will reset and turbine trip valve can be reset.
 - 1.1.2. If the system does not reset, notice which trip is illuminated and take the necessary action to clear the fault.
 - 1.2. Reset the Turbine as follows:
 - 1.2.1. Lift the trip plunger up till it engages and stays in the up position.
 - 1.2.2. Lift the turbine combo valve lever till it engages and opens the trip valve.
2. *The operator can now initiate a START command. Automatic governor control incorporates PID control algorithms within the PLC. The PID control will send a signal to the turbine governor valve. The control signal will modulate the valve as necessary to maintain a specific setpoint. Depending on operation mode this control signal may be derived by speed, pressure, or kilowatt control loops.*

During the initial starting of the system, the control objective is to increase the turbine speed to rated (synchronous speed) in a controlled manner by increasing the speed setpoint.

2.1. START

- 2.1.1. The operator ensures exhaust and inlet block valves are opened completely.
- 2.1.2. The operator initiates a START with Automatic Speed Setpoint Ramp.

- 2.1.3. Steam turbine will ramp to slow roll speed and hold for the specified slow roll hold time. Slow roll allows the turbine shaft to become true (remove any bow that may develop during shutdown).

Slow roll: 5 minutes @ 1000 rpm
- 2.1.4. After 5 minutes at slow roll, close all steam drains (leaving steam traps functional).
- 2.1.5. When the slow roll is complete, press the "Ramp to Rated" push button. Press this button to enable auto ramp to rated speed.

Rated speed: 3610 rpm
- 2.1.6. When the turbine speed is at or near rated, the system is ready for breaker closure.
 - 2.1.6.1. If the breaker control is set for "AUTO" once system has reached rated speed and speed is maintained between lowest allowable and highest allowable speeds the breaker will Automatically shut.
 - 2.1.6.2. If the breaker control is in "MANUAL" once the unit has settled out at rated speed the operator can press the "MANUAL" pushbutton to close the breaker

PROCESS CONTROL

- 3. Process control incorporates two PID controls:

- 3.1. Exhaust pressure control - Exhaust pressure control utilizes a PID control to maintain exhaust pressure (process variable) at a designated value (setpoint). The PID controller will modulate the signal to the valve in response to the magnitude and duration of difference between the process variable and setpoint. This signal then changes the valve position allowing more or less steam into the exhaust steam header, thereby maintaining the desired pressure. Exhaust pressure setpoint can be changed as necessary. Typically this setpoint will be at least 2 psi higher than that of the pressure reducing station pressure controller.
- 3.2. Generator kW limiting control - Generator kW control utilizes a PID control to limit the generator kW production to a desired kW setpoint. The PID controller will modulate the signal to the valve as required to maintain the setpoint. The generator kW limiting setpoint can be changed at any time. This control mode can also be used to base load the generator at some value less than maximum.

[THESE TWO CONTROLS WORK CONCURRENTLY, BUT ONLY ONE LOOP CAN CONTROL THE TURBINE THROTTLE VALVE AT ANY GIVEN TIME. THE CONTROLLER WITH THE LOWER OUTPUT WILL CONTROL THE VALVE.]

- 3.3

HANDVALVE CONTROLS

- 4. Handvalves supplied with turbine package can be operated in automatic and manual. The operator selects the operating mode by pressing pushbutton on start up page or overview page.

4.1. Automatic handvalve operations

- 4.1.1. The handvalves in Automatic mode will be controlled by a differential pressure between inlet pressure and nozzle pressure. As the differential pressure approaches minimum setpoint this is an indication that turbine is passing as much steam as it is capable thus a handvalve must be open to allow for more steam to flow. In reverse as the differential pressure increases and reaches a maximum setpoint. The controls will shut a handvalve in order to maximize efficiency of the turbine.
- 4.1.2. Handvalve optimizer looks at the differential pressure that controls the handvalves and the position of the bypass PRV. Once we reach minimal differential pressure where a handvalve would open the controls delay opening until PRV reaches a certain open position. This ensures there is enough steam demand to warrant opening a handvalve and minimizes the chances the controls cycle opening and shutting of the handvalve.
 - 4.1.2.1. In the event that the valve limiter becomes controlling parameter and exhaust pressure is more than 3 PSIG below setpoint the handvalve will open

Note: when the turbine trips both handvalves will open up and upon resetting and pressing the start button both handvalves will shut.

Note: when a handvalve operates the control valve position will change rapidly to compensate for rapid changes in steam flow this is to prevent over pressurization of system.

4.2. Manual handvalve operation

- 4.2.1. In manual mode of operation the handvalve position is controlled by the operator pressing the open or shut handvalve pushbuttons handvalve operate in sequential order so that #1 handvalve opens and remains open before #2 can be opened. In reverse #2 must shut first before #1 can shut.

REVERSE POWER

5. Power output of the generator is directly related to the steam flow through the turbine. Likewise, steam flow through the turbine is a function of steam demand on the steam header. If the steam load decreases to the point where the generator acts like a motor, the generator will consume rather than generate power. This condition is referred to as Reverse Power. After a reverse power time period expires (30 seconds), a reverse power trip will be issued. The unit will open the breaker and ramp down in speed to 1000 RPM and remain there until operator takes action.

- 5.1. If steam load returns, the operator can put the system back on-line as follows:
 - 5.2. Reset system. Using the reset button located on trip page.
 - 5.3. Increase turbine speed to rated.
 - 5.4. Close breaker

5.5. Immediately after the system is shutdown (if turbine is going to be shutdown longer than 3 hours),

- 5.6. Close the steam inlet block valve completely.
- 5.7. Close the steam exhaust block valve completely.
- 5.8. Open all turbine drains completely.

OVERSPEED TESTING

6. There are three (3) separate overspeed devices on the system. Two (2) are Airpax speed switches which also provide a speed signal to the PLC used for speed control. The third is a mechanical overspeed trip device. The electronic overspeed trip devices can be tested without actually overspeeding the system. This is described as follows:
 - 6.1. Testing the Airpax overspeed devices:
 - 6.1.1. Reset the system.
 - 6.1.2. Go to OIT Turbine page
 - 6.1.3. Using the OIT push buttons press "Test overspeed channel #1". The system should detect an overspeed as overspeed channel 1 and the system should trip. Notice the peak speed recorded on OIT Turbine page. Record the value.
 - 6.1.4. Repeat above procedure with push button "Test Overspeed channel #2".
 - 6.1.5. This concludes testing of the Airpax overspeed devices.
7. Test the Turbine mechanical Overspeed
 - 7.1. Start the turbine up as normal and bring to rated speed with breaker control in manual mode.
 - 7.2. Press and hold the "MECHANICAL OVERSPEED TEST" pushbutton. This will automatically raise the speed reference setpoint. Increasing speed up to a point above the Turbine mechanical overspeed trip level (4205 rpm). Continue to press and hold the "MECHANICAL OVERSPEED TEST" pushbutton until system trips

CAUTION

Max allowable speed is 4205 RPM. If system does not trip immediately, release the "MECHANICAL OVERSPEED TEST" pushbutton, this will enable electronic overspeed devices, which should trip the system. In the unlikely event the system does not trip immediately, press the red "EMERGENCY STOP" push button.

The system should trip. OIT Trip page should indicate a Trip Valve trip. Record the peak speed shown on OIT Turbine page. This completes the Turbine mechanical overspeed test.

SHUTTING DOWN SYSTEM:

8. Shutting system down has two methods preferred and emergency.

8.1. Normal shutdown: (Preferred method)

8.1.1. From the Start-up page or the Overview Page Press and hold for 3sec, the button in the upper right hand corner labeled Control Shut down.

Note: Pressing the pushbutton displayed as shutdown in progress will terminate shut down and the unit will remain running at current conditions.

8.1.2. Once control shut down has been initiated this button will change to indicate that a control shut down is in progress.

8.1.3. The control shut down will slowly lower valve limiter setpoint down to zero. If the unit was online making power the KW will begin to lower until a reverse power state occurs in which breaker will open and speed will be the controlling parameter. After breaker opens the valve limiter setpoint will continue to be lowered until valve limiter reaches 3% at which time a trip will be initiated to trip turbine.

8.1.4. Verify on Trip page the first out is Control shut down.

8.1.5. If the unit is to be shut down for greater than 3 hours shut steam inlet and exhaust isolation valves and open drains slowly.

8.2. Emergency Shutdown:

8.2.1. In any situation where operator feels damage to equipment or personal is possible the unit may be shut down using the Emergency stop button located on control panel, boiler control room, or switch gear. This will immediately trip turbine offline and open breaker.

Emergency trip should be used in any emergency that the operator deems necessary.

➤ OPERATOR INTERFACE:

The main control panel serves as the primary operator interface point. It is typically located within eyesight of the turbine generator. There are several components mounted on the control panel door providing visual monitoring and operator control of system parameters. These devices are summarized below:

Touch Screen operator interface (Allen Bradley Panelview Plus)

- *Controls (PB – pushbutton) (VE – Value Entry)*
Start options:
1. PB – Start

Speed Ramp Options:

1. PB – Ramp to Rated
2. PB – Ramp to Slow roll
3. PB – Manual Speed UP
4. PB – Manual Speed DOWN

Breaker:

1. PB – Breaker Close AUTO/MANUAL
2. PB – Manual Close breaker.

Other:

1. PB – Controlled Stop
2. PB – Controlled Stop Cancel (displayed only while Controlled stop is in progress)
3. VE – Speed Setpoint
4. VE – Exhaust Pressure Setpoint
5. VE – Generator kW Setpoint
6. VE – Valve limiter Setpoint
7. PB – Handvalve Mode Automatic/Manual
8. PB – Handvalve Optimizer on/off
9. PB – Open handvalve
10. PB – Close handvalve
11. PB – Page Dir *Note: appears on all pages*

- *Monitored Parameters*

Startup Page

1. Turbine Generator Status: (tripped, ramping, at slow roll,...etc.) *Note: appears on all operations pages*
2. Actual Speed.
3. Speed setpoint & target
4. Actual Exhaust pressure
5. Exhaust pressure setpoint & target
6. Actual Generator kW output
7. Generator kW setpoint & target
8. % Valve command
9. Valve limiter setpoint & target
10. Breaker Controls & status
11. Handvalve controls & status
12. Alarm Status *Note: appears on all operations pages*
13. PRV position %
14. Lube Oil Pressure

Overview Page

1. Items all items from start up page

- 2. Temperature
- 3. Runtime counters

Power page

- 1. Voltage
- 2. Current
- 3. Power: Real, Reactive, Factor
- 4. Frequency

Turbine page

- 1. Electronic Overspeed channel #1
- 2. Electronic Overspeed channel #2
- 3. Peak Speed Reached
- 4. Speed (Actual, setpoint, target)
- 5. % Valve command
- 6. Temperature turbine bearings (inlet, exhaust)
- 7. Temperature Alarm & trip setpoint

Generator Page

- 1. Temperature Generator Bearings and Stator.
- 2. Temperature Alarm & Trip setpoints
- 3. Total MWH counter
- 4. MWH counter that automatically resets (20,000KWH) *this is adjustable fro the OIT*
- 5. PB – Reset MWH counter
- 6. KW (actual, setpoint, target)

Alarm List

- 1. See ALARM PAGE in Section III

Trip List

- 1. See TRIP PAGE in Section III

All other pages in Section III

Controls located on Control Panel Door

- 1. Control power switch
- 2. Mechanical Overspeed test Pushbutton.
- 3. Emergency Stop pushbutton

Remote Operator Interface (Allen Bradley Panel 550)

- 1. Displays Exhaust pressure (actual, setpoint, target)
- 2. VE-F1 Button Exhaust pressure target.
- 3. F5- Alarm silencer.
- 4. F12- Display configuration page.
- 5. Handvalve status.
- 6. PRV % open.

III
OPERATOR INTERFACE TERMINAL (OIT) SCREENS

START-UP

TRUBINE
PAGE

Power PAGE

ALARM PAGE

Dis I/O

SYS
OVERVIEW

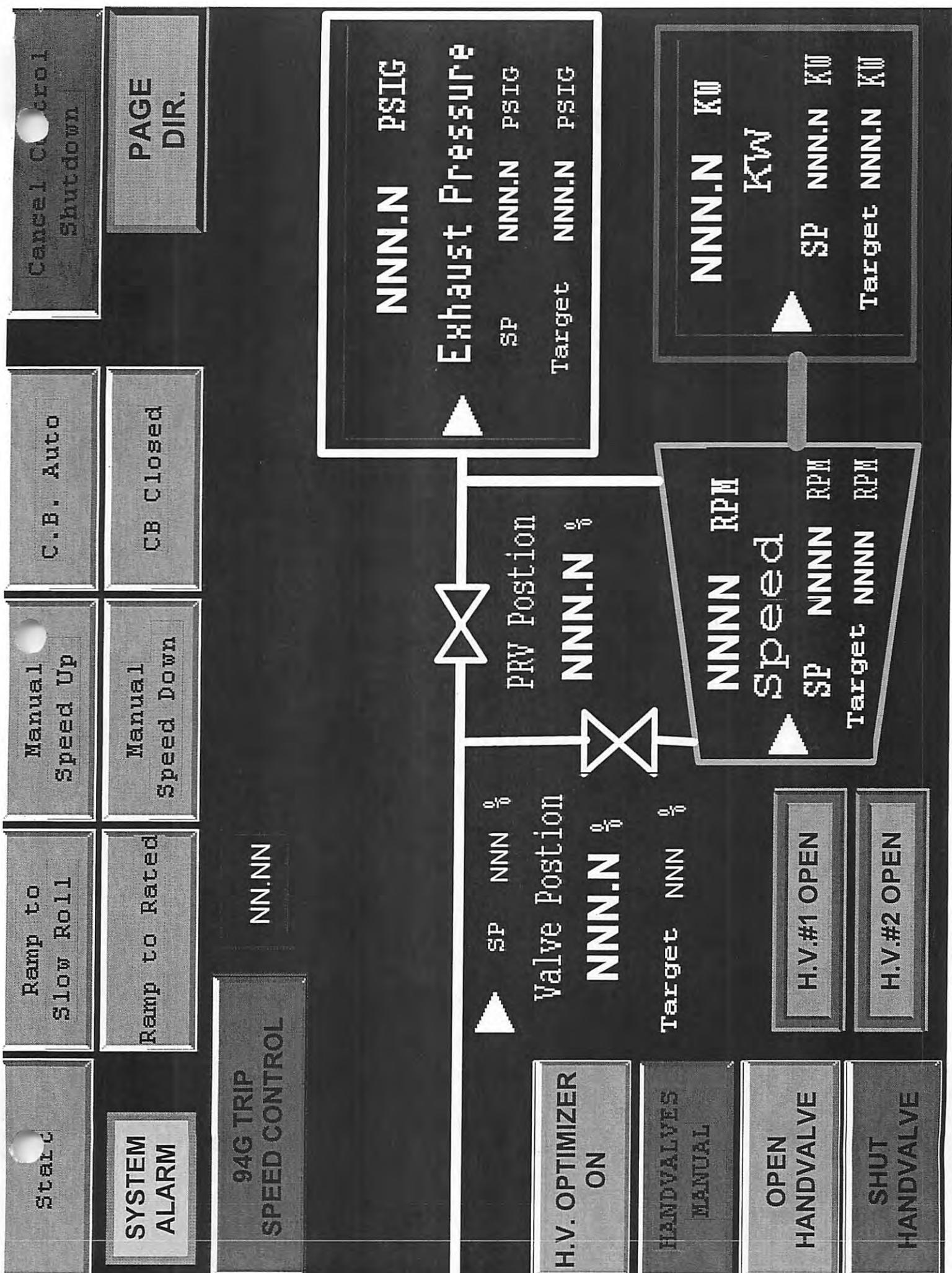
GEN. PAGE

HANDVALVE

TRIP PAGE

ANL INPUTS

ALARM
HISTORY
PAGE


Admin
login
Admin
logout

Setpoints
GEN
Setpoints

TIMERS

HANDVALVE
TUNING

PID
TUNING

Valve Position
NNN.N
SP NNN
Target NNN

PRV Position
NNN.N

94G TRIP
SPEED CONTROL

PAGE
DIR.

SYSTEM
ALARM

Control Shutdown

Spec
NNNN RPM

Target NNNN RPM

Exhaust Pressure

NNN.N PSIG

NNN.N PSIG

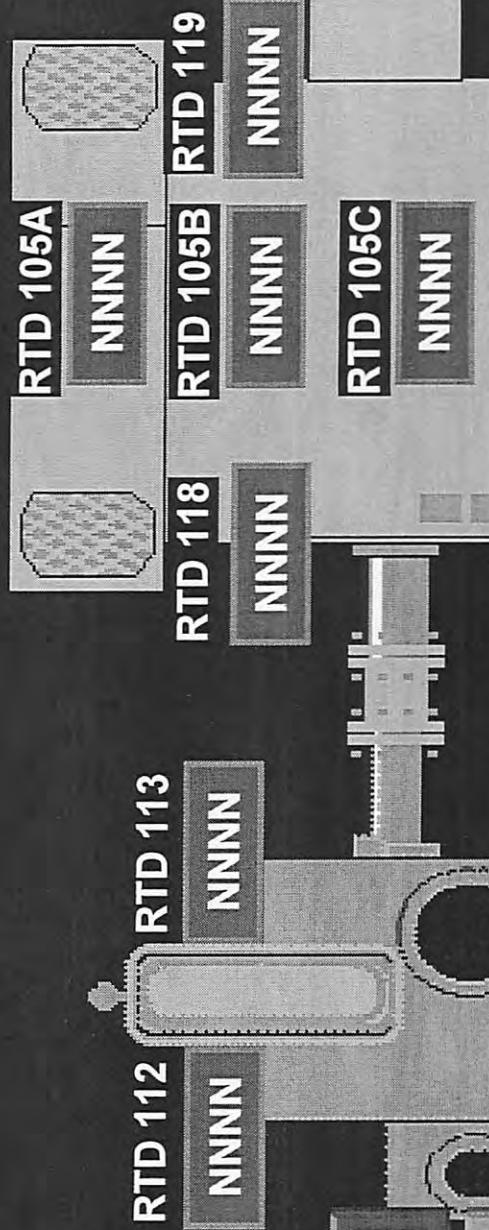
NNN.N PSIG

KKW
NNN.N KW

SP NNN.N KW

Target NNN.N KW

TOTAL RUNTIME
RUNTIME


NNNN : NN
NNNN : NN

H.V. OPTIMIZER
OFF

HANDVALVES
MANUAL

OPEN
HANDVALVE

SHUT
HANDVALVE

SYSTEM READY
TO START

L1 - L2 L2 - L3 L3 - L1 FREQUENCY

VOLTAGE

NN.NN

NNNN

NNNN

NNNN

CURRENT

NNNN

NNNN

NNNN

NN.NN

POWER
FACTOR

KVA

KVAR

KW

POWER

NNNN

NNNN

NNNN

N.NN

FOGE
DIR.

ELECTRONIC OS1

NNNN

TEST
OVERSPEED
CHANNEL #1

ELECTRONIC OS2

NNNN

TEST
OVERSPEED
CHANNEL #2

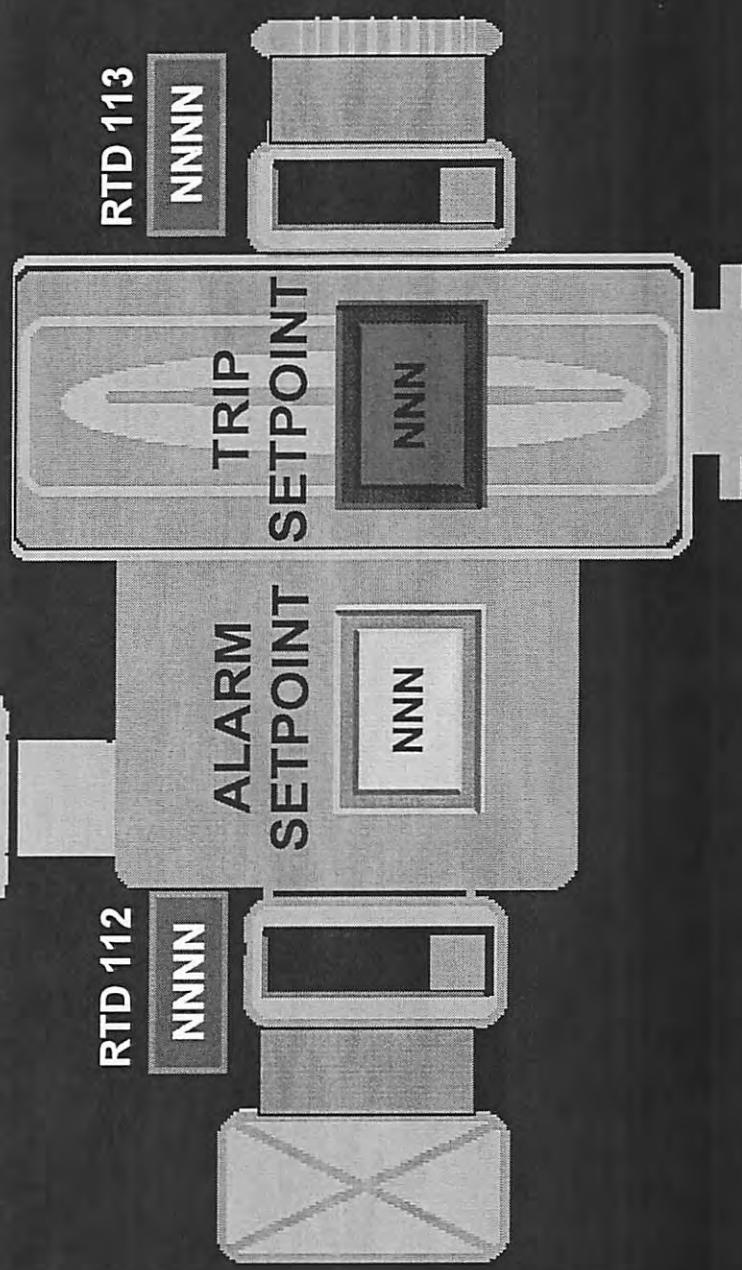
PEAK SPEED

NNNN

RESET PEAK
SPEED

Speed

NNNN RPM


SP NNNN RPM

Target NNNN RPM

NNN.N %

Target NNN %

Valve Position

SYSTEM
ALARM

94G TRIP
SPEED CONTROL

PAGE
DIR.

NNN.N KΩ
KΩV
SP NNN.N KΩ
Target NNN.N

94G TRIP
SPEED CONTROL

SYSTEM
ALARM

BEARING
ALARM
SETPOINT

NNN

TRIP
SETPOINT

NNN

RTD 105C
NNNN F

RTD 105B
NNNN F

RTD 105A
NNNN F

STATOR
ALARM
SETPOINT

NNN

TRIP
SETPOINT

NNN

RTD 119
NNNN F

TOTAL MWH NNNN.NNN
MWH NNNN.NNN

MWH RESET

RTD 118
NNNN F

ALARMS

RTD TRIPS

TE113
ALARM

TE118
ALARM

TE119
ALARM

TE112
ALARM

TE105A
ALARM

TE105B
ALARM

TE105C
ALARM

TE113

TE112

TE118

TE119

MPU
ALARM

HV
ALARM

TE119

TE105A

TE105B

TE105C

CB FAIL
ALARM

POWER

PLC
FORC*

BECKWITH
ALARM

HORN
SILENCER

ALARM
RESET

Emergency Stop (PANEL)

STATOR Temp

94G BREAKER

94T In

EXH. PRESS. In Band

Speed

Emergency Stop (REMOTE)

TURBINE TEMP (BEARINGS)

BECKWITH ONLINE

Trip Valve Open

Overspeed 1

Emergency Stop (REMOTE)

GEN. TEMP (BEARINGS)

BREAKER

REV. POWER TRIP

Overspeed 2

Control Stop Clear

REV. POWER TRIP

MPU'S Operational

TURBINE OPERATIONAL

SYSTEM ALARM

FIRST OUT

PAGE DIR.

SYSTEM RESET

REVERSE POWER (940)

DISCRETE INPUTS

94G- Breaker Reset

194TX- Turbine Reset

OS1-TRIPPED

OS2-TRIPPED

OS1- MECH OS TEST ENABLED

LOCAL-Estop

REMOTE Estop

ZS/TT-1 TRIP VALVE OPEN

HV #1 OPEN SW 1

HV #1 OPEN SW 2

HV #2 OPEN SW 1

HV #2 OPEN SW 2

52A Breaker Closed

POSE
DIR.

DISCRETE OUTPUTS

CB CLOSED CIRCUIT ENERGIZED

PLC 94GX DE-ENERGIZED

PLC 94TX ENERGIZED

OS1 TEST ENABLED

OS2 TEST ENABLED

ALARM HORN

AUTO HANDVALVE 1 OPEN

AUTO HANDVALVE 2 OPEN

ANALOG INPUTS

PAGE
DIR.

NNNN EXHAUST PRESSURE

NNNN INLET PRESSURE

NNNN CHEST PRESSURE

NNNN MPU CHANNEL 1

NNNN MPU CHANNEL 2

PAGE
DIR.

SLOW ROLL SPEED RAMP FOR SPEED INC SPEED INC
SPEED SP CRIT. SLOW FAST

NNNNN NNNNN NNNNN

LOW SPEED SPEED PRV HV#1 PRV HV#2
SP DROOP SP SP SP

NNNNN

NNNNN

NNNNN

NNNN

MAX. MPU STOP OVERSPEED PRV TIMER
ERROR SP VALVE SP SP SP

NNNNN

NNNNN

NNNNN

NNNN

PRESS. MAX. EXH PRESS
RAMP RATE SP PRESS. SP TRIP SP

NNN.N

NNN.N

NNN.N

TUBN.BRG. SETPPOINTS
ALARM TRIP

NNN

NNN

SPEED
P
OFFLINE

SPEED
DERIVATIVE

**SPEED
PID
DEADBAND**

Page
Dir.

NN.NN

NNNN
SPEED
PID
MAX

NN.NN EXH PRI
NN.NN EXH PRESS P

NNNN
EXH PRE
PID
MAY

NN.NN

NNNN
EXH PRE
PID
MAY

NNN.N **KW GEN** **PID** **MAX**

NN.NN
KW GEN
I

NNN.N
KW GEN
PID
MAX

—N.N.N.

NNN.NNN

TIMERS

NO RESPONSE TIMER HOLD AT SETPOINT RAMP
TRIP TIMER SLOW ROLL TIMER

NNNN

NNNN

NNNN

REVERSE POWER TURBINE TEMP
TIMER TRIP DELAY

NNNN

NNNN

NNNN

HANDVALVE DELAY HANDVALVE
AT SETPOINT SEQUENCE DELAY

NNNN

NNNN

NNNN

PAGE
DIR.

94G TRIP
SPEED CONTROL

NNN.N HANDVALVE 1 OPEN SETPOINT

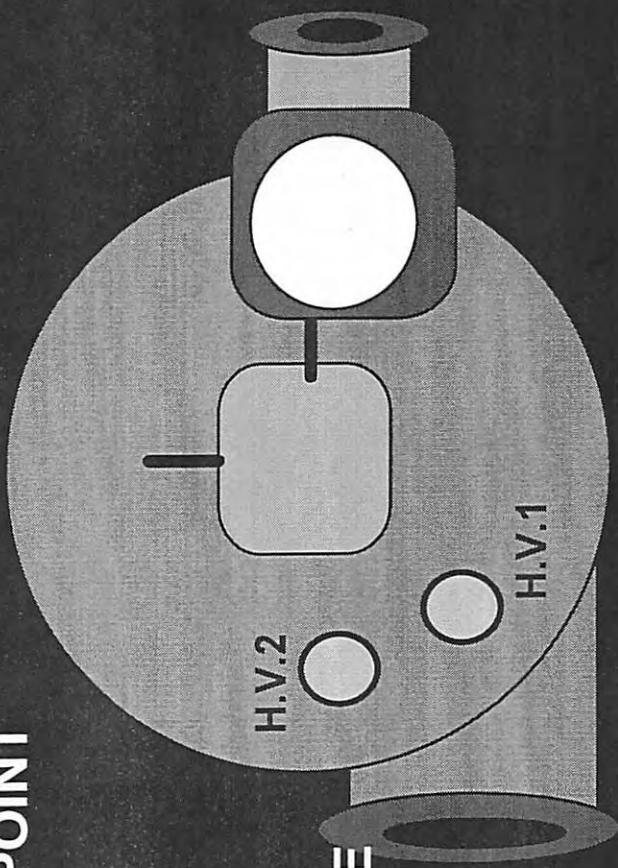
NNN.N HANDVALVE 1 SHUT SETPOINT

NNN.N HANDVALVE 2 OPEN SETPOINT

NNN.N HANDVALVE 2 SHUT SETPOINT

NNN.N

NNN.N INLET PRESSURE


NNN.N DIFFERENTIAL PRESSURE

H.V.2

H.V.1

NNN.N CHEST PRESSURE

NNN.N EXHAUST PRESSURE

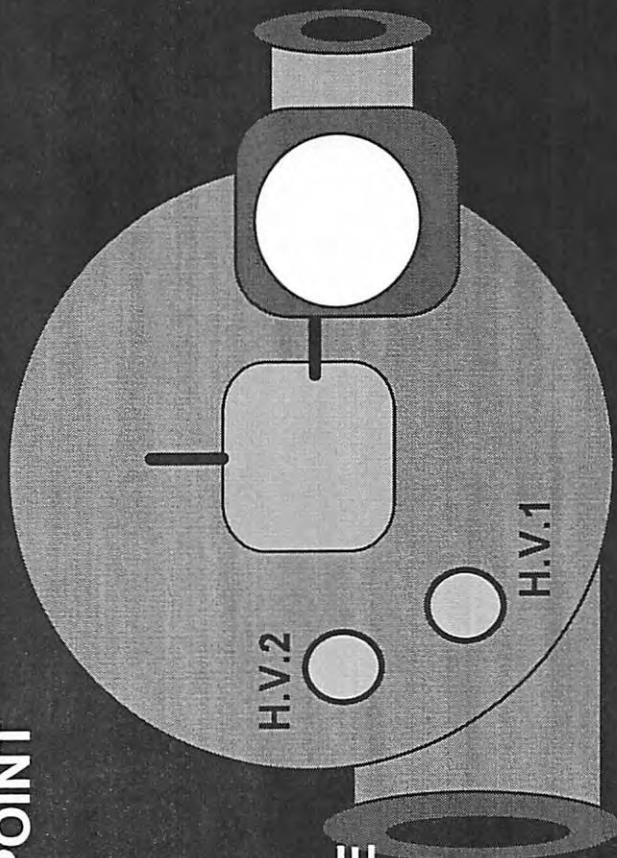
PAGE
DIR.

94G TRIP
SPEED CONTROL

NNN.N HANDVALVE 1 OPEN SETPOINT

NNN.N HANDVALVE 1 SHUT SETPOINT

NNN.N HANDVALVE 2 OPEN SETPOINT


NNN.N HANDVALVE 2 SHUT SETPOINT

NNN.N INLET PRESSURE

NNN.N DIFFERENTIAL PRESSURE

NNN.N CHEST PRESSURE

NNN.N EXHAUST PRESSURE

SYNCH SPEED SP SPEED LOW SPEED HI

NNNNN NNNNN

NNNNN NNNNN

NNNNN NNNNN

PAGE DIR.

KW MIN. REVERSE MWH RESET
SP POWER SP SP

NNNNN NNNNN NNNNN

GEN. BRG. SETPOINTS

ALARM TRIP

NNN NNN

TOTAL MWH
RESET

STATOR SETPOINTS

ALARM TRIP

NNN NNN

Ack
Alarm
[F1]

Silence
Alarms
[F2]

Clear
Alarm
[F3]

Close
[F4]

Alarm History

	Alarm time	Acknowledge time	Message
*	9:19:06 PM	9:19:06 PM	1234567890123456789012345678901234567890

<input type="button" value="Ack Alarm"/>	<input type="button" value="ALARM RESET"/>	<input type="button" value="Home"/>	<input type="button" value="Page Up"/>	<input type="button" value="Move Up"/>	<input type="button" value="Close"/>
<input type="button" value="Ack All"/>	<input type="button" value="SILENCE HORN"/>	<input type="button" value="Clear All"/>	<input type="button" value="End"/>	<input type="button" value="Page Down"/>	<input type="button" value="Move Down"/>

Clear
All
[F2]

Close
[F5]
▲ [F4]
▼ [F3]