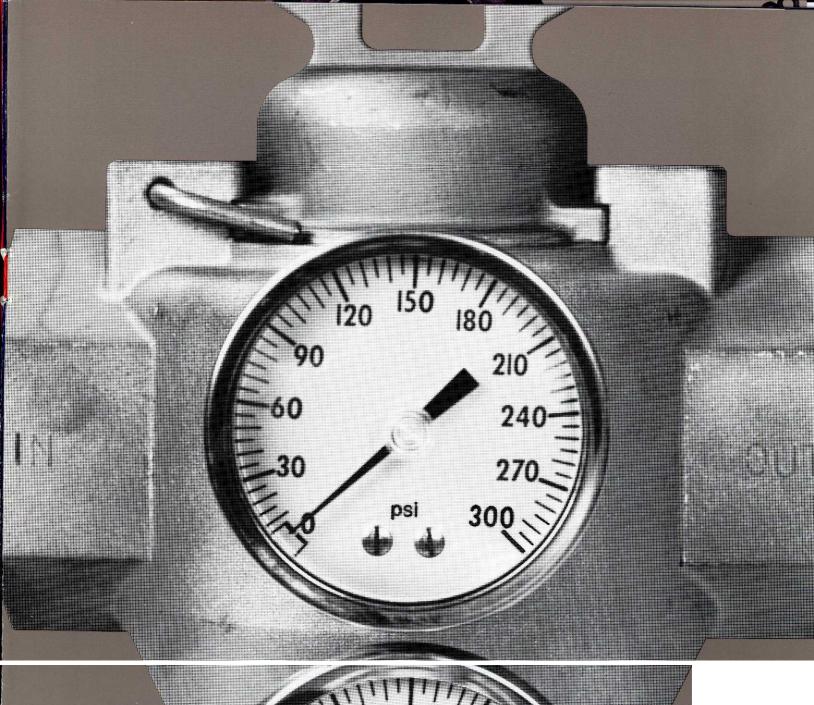
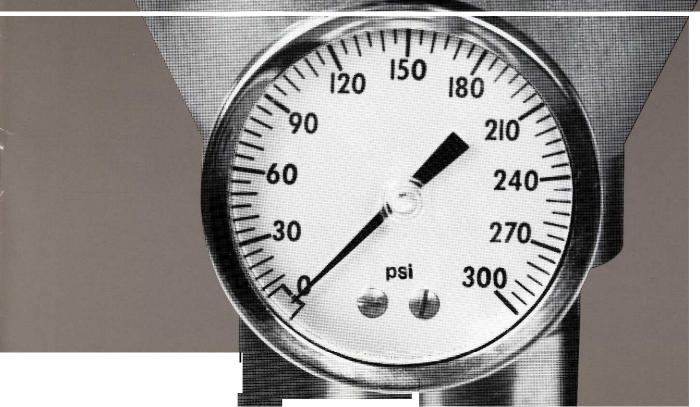


AES is committed to helping papermakers consistently achieve a high quality product.


Filtration has been a core specialty at AES Engineered Systems since the company's inception. Our design innovations and manufacturing excellence continually set standards that serve as performance goals within the industry. We are a world leader in supplying filtration systems for papermaking mills that produce all types of paper products.


Built to meet specific applications, AES filtration components consist primarily of in-line and multiple barrel pressure filters and gravity or vacuum assisted strainers. A complete range of design options can be used to meet the demands of a specific process. High efficiency, operating control and ease of operation are key design objectives.

Your mill might require a white water recovery system for economy and reduced energy consumption. AES has the capability, expertise and experience to meet your papermaking filtration requirement. Our workmanship is unmatched and our attentive services are readily available before, during and after installation. You can depend on consistent, effective filtration to help you achieve uniform, high quality paper products.

We take our responsibility for helping papermakers seriously. That commitment goes hand -in-hand with producing ultimate papermaking filtration systems.

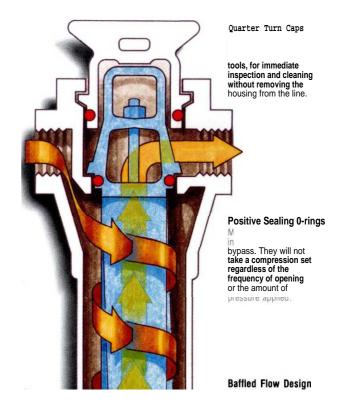
Engineered stems

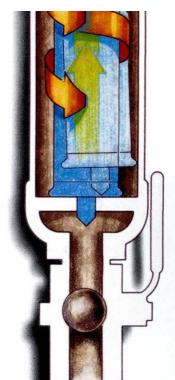
In-Line Filters

Providing

distinct

benefits to


papermaking


applications

There are features unique to each AES Engineered Systems In-Line Filter-features providing distinct benefits to papermakers.

- Quarter turn caps provide access to filter elements in seconds -without tools-for immediate inspection and cleaning without removing the housing from the line.
- Element centering pins guarantee axial alignment of the element even in non-vertic^ installations. The quarter turn cap locks the element in position, eliminating stress and vibration problems.
- Positive sealing "0" rings will maintain absolute seal integrity to prevent bypass. They will not take a compression set regardless of the frequency of opening or the amount of pressure applied.
- The baffled flow design of the head castin helps route the liquid to provide uniform dispersion over the filter media resulting in even contaminant buildup, longer media life and less frequent cleaning.

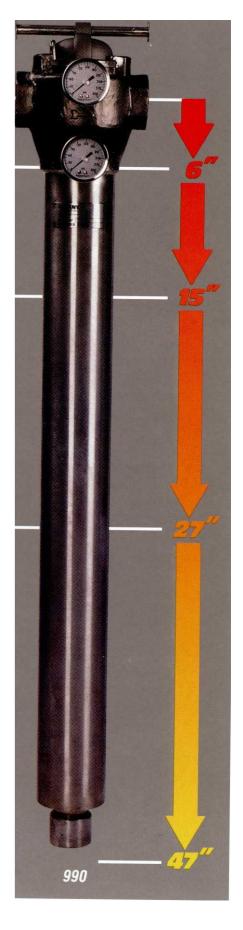
Single Filters

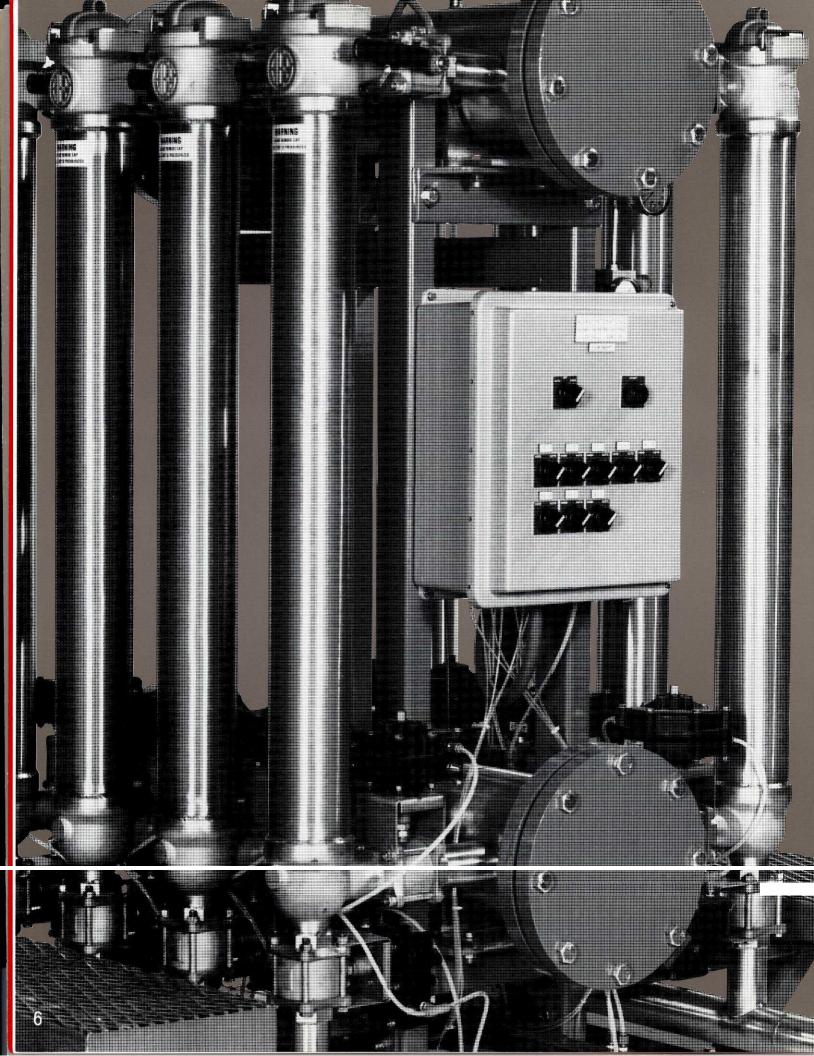
dispersion over the filtor media resulting even contaminant build-up. longer media life and less freauent

Element Centering Pin

Guarantees the filter element is axially vertical installations. The quarter turn cap locks the element in position, eliminating

stress and vibration problems


Design Specifications

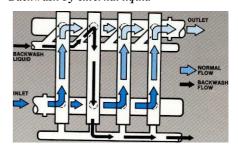

	Pipe NPT		nal Flow	Мес	dia Area
Model	Connection	GPM	fpm	in'	cm'
J4U	a14 "	15	55	22	142
490	1"	30	115	75	484
770A	2"	40	150	75	484
7708	2"	80	300	150	968
770C	2"	120	455	225	1452
990	2"	150	570	408	2632

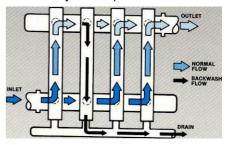
Material: 6 Stainless Steel

Pressure: 1000 PSI/ **6.9 M Pa** (340, 490, 770)

Multiple Barrel Filters

Fabricated to meet the papermaker's specific application


- AES Engineered Systems Multiple Barrel Filters offer the papermaker significant process advantages.
- Permanent, reusable elements eliminate recurring costs.
- Quarter-turn caps provide quick, easy and clean access to elements without need for tools and without barrel removal. Housings are piped solidly into the line.
- Standard "0" rings seal easily and securely to prevent leakage.
- The element's centering pin prevents misalignment or warping.
- Parallel barrels on a common header provide continuous flow during backwash.
 The process is not interrupted.
- Pressure gauges on each header plus a differential pressure gauge provide easy determination of pressure drop.
- Internal or external backwash allows choice of backwash liquid.


- Manual or automatic backwash
 Automatic backwash by time clock and/or pressure differential switch
- Automatic package features solid state electronics with additional options available including connection to customer 's PLC or DCS
- · Automatic units have manual override
- 2" or 21/2 " valve choice
- Cone diffusers are available
- EPDM seals are standard. Buna "N'; Teflon or Viton are available as options.

Backwash by external liquid

Backwash by filtered product

Backwash occurs only upon demand and may be triggered by a pressure differential switch, by a timing device, a combination of the two, or manually. Process flow is uninterrupted in remaining units as a barrel is backwashed.

Multiple Barre/ Filters

Design Characteristics

Temperature !0°F/205°C maximum

Pressure ^5 PSIG/1.9 MPa maximum at 100°F.

Flow Rate | GPM/2.3 lpm maximum per Sq.In Filter Media

Viscosity 3000 CP.
Solids Removal PPM maximum
Filtration Levels 5000 Microns

Filter Element % Milt

Type :-lace Filtration Cylindrical

Construction ven stainless steel or synthetic cloth

perforated stainless steel backer, 'tted stainless steel.

Flow Direction aide to inside

Size "%80 mm diameter by 40"/1015 mm length

18 sq.in./2632 Sq.cm. per element)

Back Flush 1 GPM/570 Ipm at 60 PSIG/.4 MPa for 5 seconds per tube

Seal rings and flat gaskets, EPDM standard

na "N", Teflon, Viton optional)

Frame Assembly

Construction -d structural steel stations available Options or paired barrels

s step,

Connections class 150 lap-joint flanges on

and outlet, 21/2" NPT drains

Backwash "I PT or 3" lap-joint flange

Controls

Automatic 'quencing solid state electro-pneumatic

iy automatic. Cycle start by differential

-,ssure switch, timer or push button.

Panel ma 4X water tight
Manual Indard hand valves

Electric 240 Vac. 50/60 Hz, single phase

51/.055 m3 per min. at 80 PSIG/.5 MPa

Type ':ece ball valve
Size/C, !20, 21/2"/195
Material Stainless Steel

Seats & Seals -E and/or glass filled PTFE

Actuation | ual handle or single rotary pneumatic

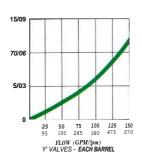
Bator (double acting type)

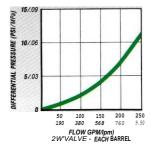
Arrangement -al multiple tubular, single or pairei

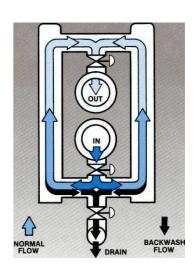
Construction :ed Stainless Steel

Size 115 mm 0.D. by 52"/1320 mm 11

Access !,irn quick-access cap


Seals to "0" rings


is "N". Teflon, Viton optional)



AES 5700 5 BARREL

OP vs. GPM/fpm

Design Specifications

	Number		Valve	П	2'/2" Valve				
Model			inal Flow	_		nal Flow		dia Area	
iviodei	of Barrels	GPM	lpm		GPM	lpm	in-	cm,	
500002	z	1tU	5/U		<i>Z5U</i>	945	816	5265	
5000C3	3	300	1135		500	1895	1224	7895	
5000C4	4	450	1705		750	2840	1632	10530	
5000C5	5	600	2270		1000	3785	2040	13160	
5000C6	6	750	2840		1250	4730	2448	15795	
500008	В	1050	3975		1750	6625	3264	21060	
5000C10	0	1350	5110		2250	8515	4080	26325	
5000020	0	3000	11355		5000	18925	8160	52645	

lly for lightly loaded feed (low PPM) or low pressure drop. Consult your AES Sales Engineer for details.

AES 6700 10 BARREL

Model Definitions

AES 5000 Duo

Paired construction with tee connections to the inlet and accepts **2 barrels** using three individual manual valves. Used for aerate flows when backwash is not required. Elements are aned manually and may operate individually with one in ndby or in parallel.

AES 5500

;ed construction with one valve set per pair of barrels with ier manual or automatic *INTERNAL backwash*. Used for fine ation (low micron) for low to moderate flows. One *PAIR* of gels flush with each backwash.

AES 5550

ne as 5500 Series except EXTERNAL backwash. (REF Pg.7)

AES 5600

red construction with one valve set per barrel with either nual or automatic *INTERNAL backwash*. Generally used when ¹ more barrels are required, or with less than 6 barrels if ce is a problem with the 5700 series.

AES 5650

ne as 5600 Series except EXTERNAL backwash. (REF. Pg.7)

AES 5700

igle in-line construction with one valve set per barrel with her manual or automatic *INTERNAL backwash*. Generally used en up to 6 barrels are required, or with up to 10 barrels if ace is a problem with the 5600 Series.

AES 5750

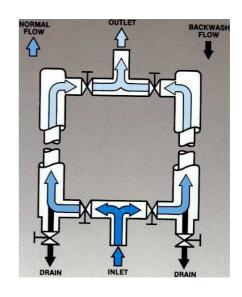
Same as 5700 Series except EXTERNAL backwash. (REF Pg.7)

AES 6600

Paired construction with one valve set per barrel.


May be constructed for either low pressure (maximum 285 PSI/1.9 MPa) or high pressure (maximum 1000 PSI/6.9 MPa) applications with either manual or automatic INTERNAL backwash. Filter elements are smaller than the 5000 Series listed above. This allows the 6600 Series to be used when the inlet flow is too low for the 5000 Series to backwash effectively pout undue flow interruption.

AES 6700


ne as 6600 Series except single in-line construction.

AES 6750

ie as 6700 Series except $\it EXTERNAL\ backwash\ for\ LOW\ LSSURE\ units\ only. (REF.\ P_q.7)$

AES 5600 S10 and 5600 S12 connected to provide 22 BARREL UNIT

Filter Media

A wide variety


available to

handle your

individual

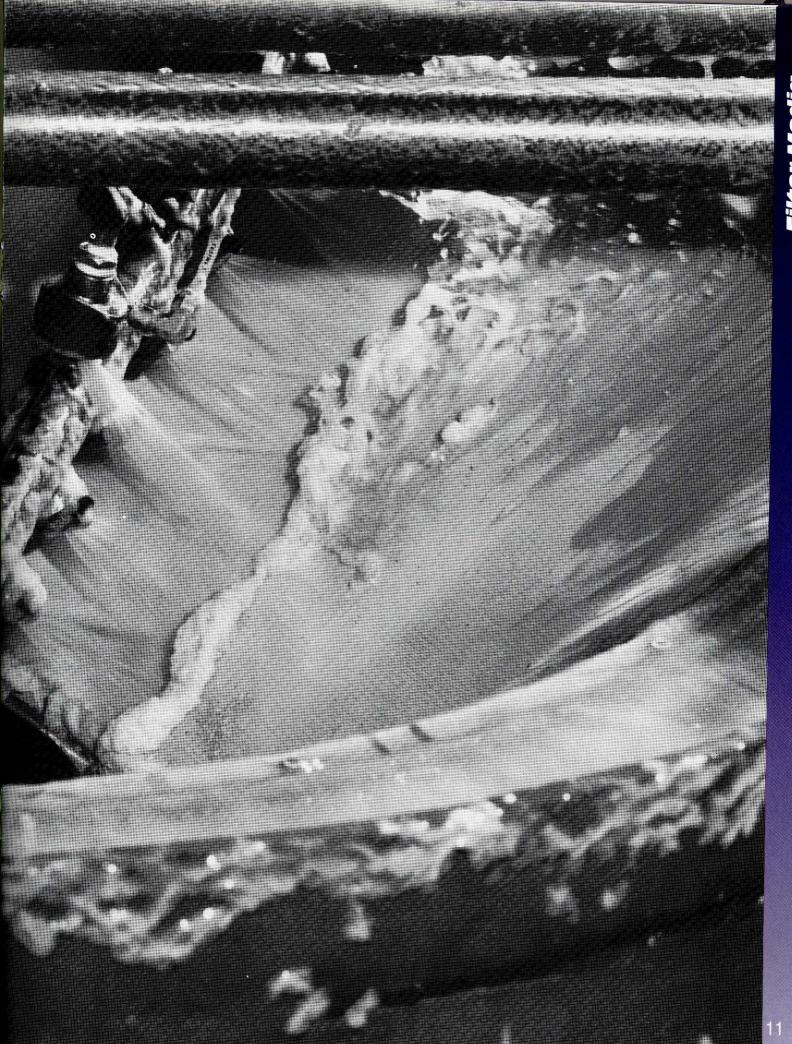
filtration needs.

- Perforated Stainless Steel is appropriate for extremely coarse filtration requirements.
 It is available with hole sizes .125"
 (3.15 mm) diameter and larger.
- Metallic screens, 150 mesh or finer, and all Synthetic Fabrics are mounted over a perforated backer and 20 or 60 mesh screen for structural support. This disperses the flow and assures full utilization of the entire surface area of the outer screen or fabric. Available for filtration down to 5 microns nominal.
- Spiral Wound Slotted Wedge Wire is extremely rugged media capable of withstanding very high differential pressures. It's especially suited for filtering fi bers or gelatinous particles that have a tendency to "staple" themselves into the openings of screens, which impedes backwashing. The triangular shape of the wire increases backwash flow velocity at the external surface of the media. This increases turbulence and facilitates the cake release. Available in slot openings from .001 " to .065" (.025 mm 1.65 mm).
- Diffusion Bonded elements are made by taking three layers of engineered screens and a perforated support plate, all of 316 stainless steel material, and sintering them at above 2000°F (1095°C) in a controlled atmosphere to allow molecules to migrate (diffuse) across the contact points and recrystalize. This forms a strong integrated structure where all contact points of the structure are bonded together. The material is then rolled and welded into the shape of a filter element. The elements are solution heat treated after welding to maintain corrosion resistance.

Perforated Stainless Steel

Synthetic Fabric over Stainless Steel Backer

Wedge Wire



Diffusion Bonded

V1/I Q/ in

Approx Pore O _l Inches	imate pening Microns	S.S. Perforated Hole Size	SS. Spiral Wound Slot Opening	S S. Square Mesh Wires/Inch	S.S Wire Cloth Micron Rating	Synthetic Fabric Micron Rating
.187	4750	.1875"				
.034	863			20		
.014	355		.014"	40		
.010	254		010"			250
.0092	233			60		
.0059	149		.006"	100		150
.0041	104			150		100
.0030	75		.003"	200		75
.0024	61			250		
.0020	50		.002"			50
.0014	44			325	44	36
.0013	32				32	
.0010	25		.001"			25
.0008	20				20	
.0006	15					15
.0004	10				10	10
.0002	5					5

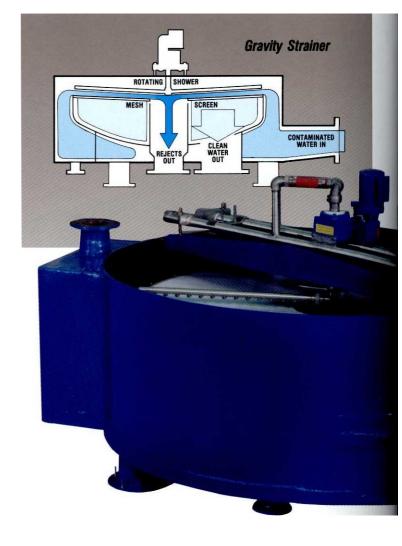
Chart for normally stocked media. Special media designs available. Contact AES All Ratings APX. Nominal opening comparison. Particle removal performance may differ from standard mesh

1 F1 **J** 1 **J** 144-1

Simple, efficient, designed for economical results.

Mills worldwide value AES Engineered Systems strainers for their outstanding economical and reliable performance in many papermaking applications.

- AES Gravity Strainers are in use polishing white water for showers, removing felt hairs from recycled press water, on pulp mill applications, on deckers, stock washers and on savealls-even on mill influent systems.
- Benefits include substantial energy and water savings, highly effective fiber and solids removal and reliable operation even when upsets and slugs occur.


Gravity Strainer Design Sped

			O I					
	Flow	Capacity	Nominal	Nominal	Net/Reject	Accept	Gross	Weight
	Ra	inge BPM	Diameter In	Height'	Connection In	Connection In	Dry LBS	Flooded LBS
Model		pip	cm	cm	cm	cm	Kg	Kg
4005	96	- 610	61	59	6	10	725	2875
	365	- 2310	155	150	15	25	330	1305
4015	163	- 1037	73	66	8	12	825	5150
	615	- 3925	185	170	20	30	375	2335
4025	241	- 1537	85	72	10	14	1100	7700
	910	- 5820	215	185	25	35	500	3495
4035	338	- 2153	97	73	12	16	1225	10750
	1280	- 8150	245	185	30	40	555	4875
4045	511	- 3257	115	87	14	18	1560	15000
	1935	-12330	290	220	35	45	710	6805

Height of support legs can vary to suit application.

Capacity can vary depending on inlet loading and screen mesh.

	STATE OF THE PARTY.	train	The second second				Gallons /Liters Per Min				
at v	ariou	ıs Fibi	er Kei	movai	Ha			with F	ree Drai	ning St	ock
Model	Mesh	0 99	PPM	(00.	299 PPM	300 4	99 <i>PPM</i>	500-7	99 PPM	800.10	000 PI
4005	60	610	2310	- 5							
	100	470	1780	408	1545	316	1195	250	945	158	60
	150	430	1630	37							
4.54	200	285	1080	248	940	191	725	152	575	96	36
4015	60	1037	3925	901	3410	697	2640	553	2095	348	131
	100	798	3020	694	2625	537	2030	426	1610	268	101
	150	731	2770	635	2405	491	1860	390	1475	246	93
	200	484	1830	421	1595	325	1230	258	975	163	61
4025	50	1537	5820	1336	5055	1033	3910	819	3100	516	195
	100	1184	4480	1029	3895	795	3010	631	2390	398	150
	150	1084	4105	942	3565	728	2755	570	2190	364	138
	200	718	2720	624	2360	482	1825	383	1550	241	91
4035	60	2153	8150	1871	7080	1447	5475	1148	4345	724	274
	100	1658	6275	1441	5455	1114	4215	884	3345	557	211
	150	1518	5745	1319	4990	1020	3860	809	3060	510	193
	200	1006	3810	874	3310	676	2560	536	2030	338	128
4045	60	3257	12330	2831	10715	2189	8285	1736	6570	1094	414
	100	2508	9495	2180	8250	1686	5380	1337	5060	843	319
	150	2296	8690	1996	7555	1543	5840	1224	4635	772	292
	200	1521	5755	1322	5005	1022	3870	811	3070	511	193

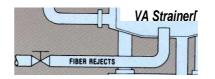
VA Strainers

Advanced technology for optimum

process results.

The latest addition to the AES filtration product line is the vacuum assisted VA Strainer.

This is a further refinement of the highly successful AES 4000 Series gravity strainer which has proven its efficiency in applications around the world.


Assisted by a low horsepower, low head blower this strainer is capable of handling up to 1% feed consistency and harder to drain (low freeness) material than the gravity units. The low vacuum also enhances the use of very fine media (down to 40 micron) on applications previously unachievable with gravity strainers.

The vacuum assisted dewatering, maintenance-free operation and maximum process protection yield optimum results for polishing, scalping and thickener applications. All this with a short payback period on the investment.

SHOWER WATER SUPPLY

FILTRATE

LOW HEAD VACUUM SOURCE 800-6000 CFM @10" H,0

model size)

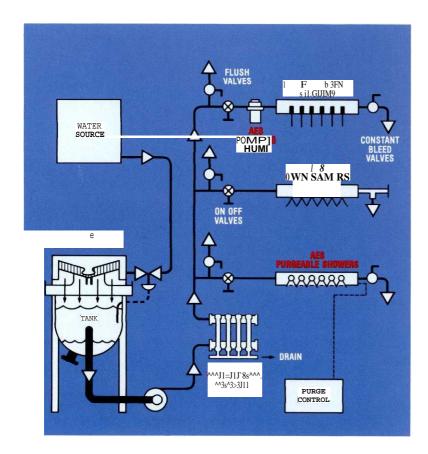
VA Strainer Design Speci#catlo

6	ode!	Flow Capacay Range" GPM Ipm	Noma! Diameter In cm	Nominal Height' In cm	Inlet/Relect Connection In Ho	Accept Connection In cm	Gross Dry LBS Kg	Weight Hooded LBS Kg
VA	. 5	100 - 525	61	66	6	10	725	2875
		375 - 2000	155	168	15	25	330	1300
VA	15	175 - 850	73	72	8	12	875	5150
		665 . 3200	185	183	20	30	400	2335
VA	25	250 - 1250	85	78	10	14	1225	10750
		950 - 4750	216	198	25	36	555	4875
VA	35	350 - 1750	97	89	12	16	1800	18050
		1325 - 6600	246	226	30	40	815	8185
VA	45	550 - 2600	115	97	14	18	3000	29400
		2075 . 9850	292	247	36	46	1360	13335

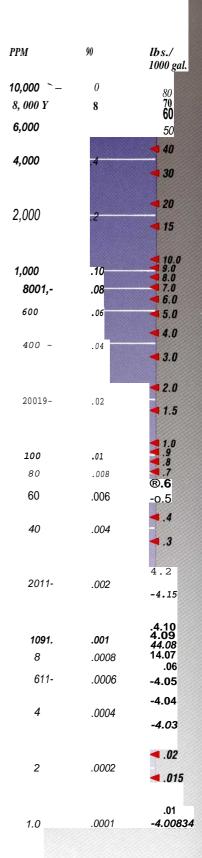
Height of support legs can vary to suit application.

Capacity can vary depending of inlet loading and screen mesh.

white water Syste 77


Today's emphasis toward increased usage of recycled fiber, environmental concerns, energy savings potential and the desire to improve efficiency are reasons why most paper mills are using recycled white water for all showers in the forming section. Despite these benefits, there are some problems which must be addressed.

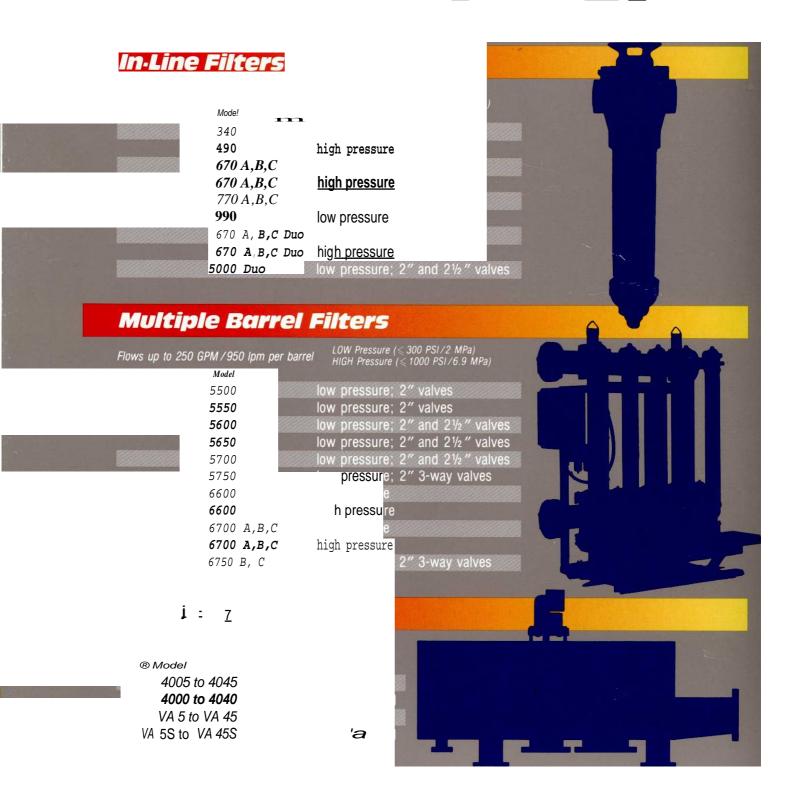
Shower nozzle plugging is critical. To minimize plugging, the shower system must be designed to use recycled white water. The ill ustration shows the components which typically constitute a correctly designed and applied white water system.


The gravity or vacuum assisted strainer initially separates fiber and contaminates from the water supply.

Floculation will occur (especially at shutdown) in the filtered white water tank. This tank must include a sludge removal drain. The pump suction outlet must be located well above the tank bottom.

To remove the flocs, an automatic or manual backwash multiple barrel pressure filter may be required downstream of the strainer. Single in-line pressure filters (polishing filters) should be used ahead of fixed orifice showers-especially if used intermittently-due to refloculation in the pipeline and for removal of pipe scale.

Conversion Table for Suspended Solids Computations


nitions
It

BACKWASHING	Cleaning filter media	$atm \times 101.33 = kPa$	Used for batch cleaning	INTERMITTENT FILTRATION
	and removing entrapped		or where product flow	
	solids by forcing a flow		may be Interrupted.	
	of liquid in a reverse	atm x $1.0333 = kg/cm'$	Filter unit may be shut	
	direction back through		down for cleaning, etc.	
	the media.		without loss of process	
EXTERNAL BACKWASH	Use of a liquid other	atm x $14.7 = PSI$	ti me.	
	than that being filtered		Separates solids from	SURFACE FILTRATION
	to backwash the media.	h 0.1	iquid by trapping them	
	This source could be the	bars x 0.1 = MPa	on the surface of a filter	
	filtered liquid with		medium. All AES filters	
	boosted pressure.	bars x 0.9869 = atm	are surface filtering	
INTERNAL BACKWASH	Use of the liquid being	2422 11 01,5005 40	devices.	
	filtered to backwash the		Any liquid containing	CONTAMINATED LIQUID
	media.	bars x 14.5 = PSI	Impurities In the form of	
CY CLE LENGTH	Duration, measured in		suspended solids.	
	time or gallons/liters		Filter media blocking or	
	that a filter media can	$^{\circ}$ Celsius = ($^{\circ}$ F-32)5/9	blinding. The openings	
	operate effectively		in the media become	
	between cleanings.	2 	partially covered by	
	Insoluable particles	°Fahrenheit = (°Cx9/5)+32	solids, reducing the	
	which are easily		effective pore size	
	filtered. They may be	cm Hg (0°C) x 1.3332 = 'kPa	and permeability.	
	added to a liquid with solids difficult to filter.	ciii i ig (0 0) x 1.5552 - Ki a	A filter medium woven	MONOFILAMENT MEDIUM
	The resultant mixture is		of threads which contain	
	thereby made easier to	in x 25.4 = mm	only a single filament.	MULTIFILAMENT MEDIUM
	filter. Common filter		A filter medium woven of yarns which are made	MULTIFILAMENT MEDIUM
	aids are diatomaceous		up of multiple filaments.	
	earth, perlite and	in Hg (0°C) x 3.3864 = *kPa	The amount of space on	MEDIA OPEN AREA
	cellulose fibers.		the surface of a filter	MEDIA OF EN AREA
	The combined filter	len/amil v. 4.4.00 BCI	medium that is available	
	media and, its support	kg/cm' x 14.22 = PSI	for penetration by a	
	structure.		liquid and which affects	
FILTER MEDIUM	A simple barrier of	kPa x 1000 = MPa	the solids retaining	
	specifically selected	a x 1000 a	capacity to a large	
	permeable material		extent.	
	upon which the solids	$m \times 3.281 = ft$	The ease with which the	MEDIUM PERMEA BILITY
	removed are deposited.		medium permits the	
FILTER MEDIA	Plural of filter medium.		passage of a fluid.	
FILTRATE	Liquid that has passed	micron = 0.001 mm	The difference In	PRESSURE DIFFERENTIAL
	through a filter medium.		pressure between the	
CONTINUOUS FILTRATION	Used where it is		entrance flow and exit	
	necessary to maintain	micron = $3.94 \times 10^{\circ}$, in	flow of the filter.	
	continuous product flow		Materials suspended in	SOLIDS
	uninterrupted by media	PPM = mg/I (at 1.0 S.G.)	liquid which can be	
	cleaning, replacement	1 1 W = 111g/1 (at 1.0 3.3.)	removed by mechanical	
DEDTH EILTDATION	or normal maintenance.		process (filtration).	
DEPTH FILTRATION	Traps solids at different	PSI x 6.8948 = 'kPa	Solids may be granular,	
	levels of penetration within a filter medium.		fi brous, glutinous, etc.	
	The medium retains		The quantity of solids In	
	solids with tortuous	US Gal x 3.7854 = liters	a liquid is expressed as	
	passages, e.g. fibrous		parts per million by weight.	
	or granular. Retention	Imp Col v 4 5464	<u> </u>	- SOLIDS RETAINING CAPACITY
	efficiency Is attained by	Imp Gal x 4.5461 = liters	capable of being	- SOLIDS RETAINING CAPACITY
	a series of low efficiency		trapped on a filter media	
	particle captures.	* Note: These preferred SI units	before cleaning is	
	The flow of water across	(Systems International d' Unites)	required.	
	a valve at 602F in	have been adapted by the General Conference of Weights and Measures	-	
	gallons/minute at a	General conference of Weights and Measures and endorsed by the		

and endorsed by the

International Organization for Standardization (ISO).

pressure drop of 1 PSI.

